

# Complexity Theory for Quantum-Input Decision Problems & Computational Hardness in Quantum Crypto

Kai-Min Chung (Academia Sinica)

<https://arxiv.org/abs/2411.03716>



**Nai-Hui Chia**  
Rice University, Ken  
Kennedy Institute and  
Smalley-Curl Institute



**Tzu-Hsiang Huang**  
UIUC



**Jhih-Wei Shih**  
Academia Sinica



# Complexity Theory

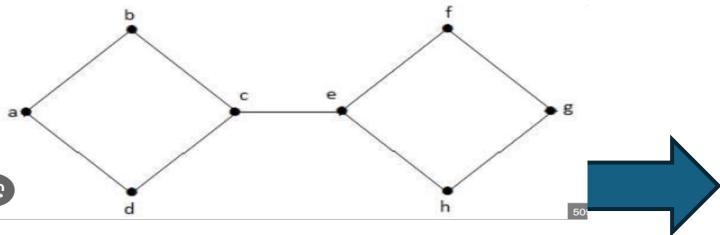
- Goal: how much computational resource to solve classical input decision problem?

**Input: classical input problem**

**output: 1 bit**

Is a graph connected?

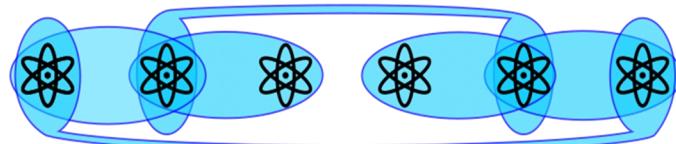
**1/0**



1 if graph is connected  
0 otherwise

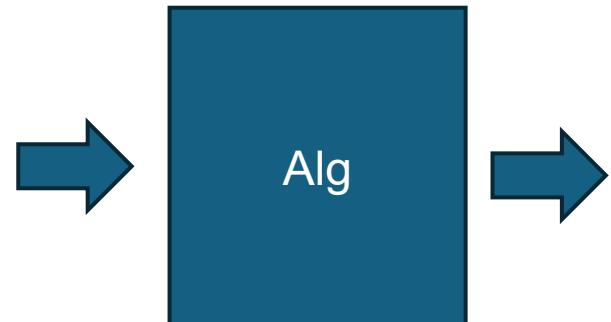
Does a local Hamiltonian have ground state energy lower than a or larger than b?

1 if the energy is lower than a  
0 if the energy is larger than b

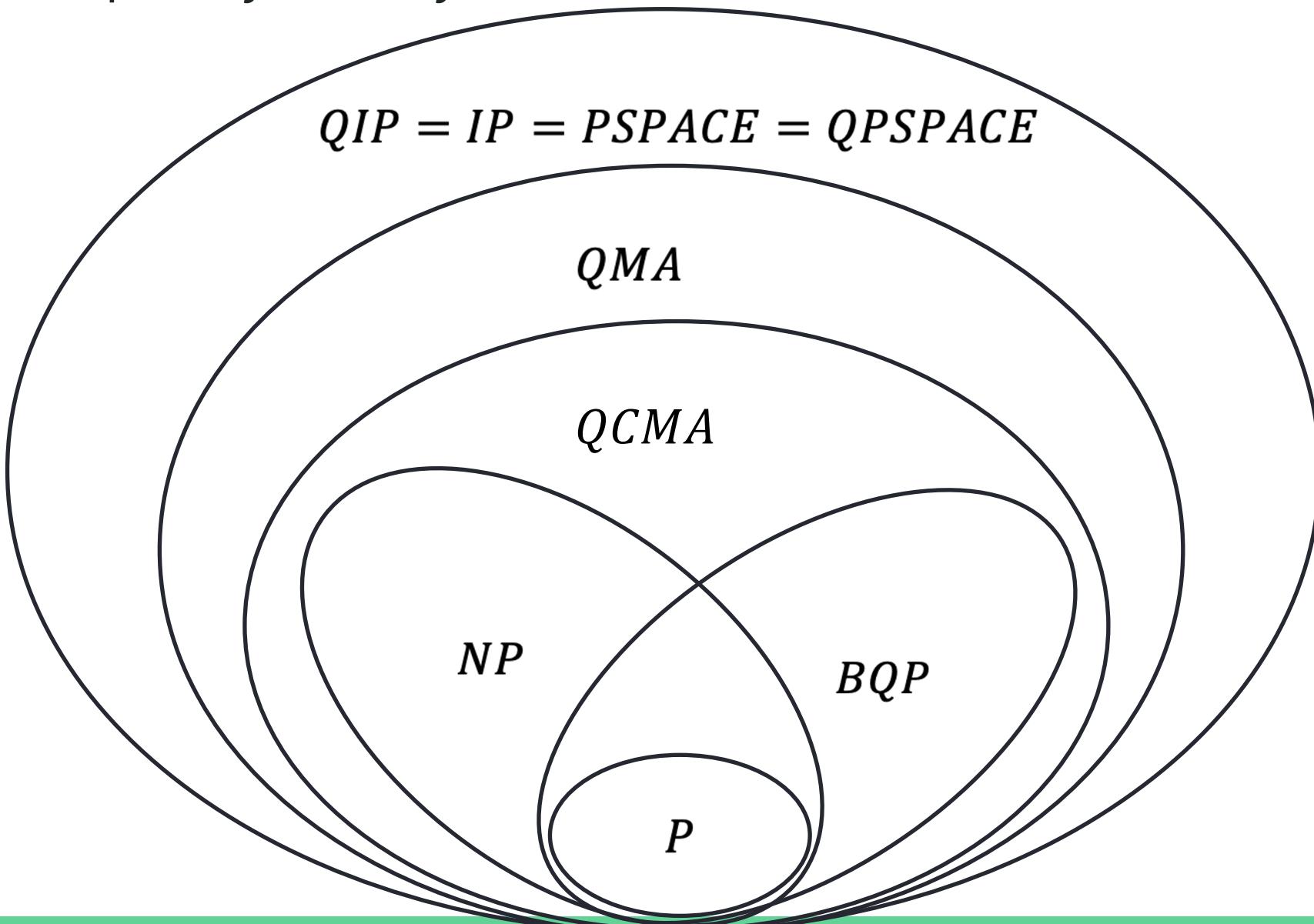


# Complexity Theory

- Goal: how much **computational resource** to **solve classical input decision problem**?
- Different type of computational resource: **time, space, interaction**
- Time:
  - **P (deterministic)** polynomial time
  - **BPP (probabilistic)** polynomial time
  - **BQP (quantum)** polynomial time
- Space:
  - **PSPACE (deterministic)** polynomial space
  - **BQPSPACE (quantum)** polynomial space
- Interaction:
  - **NP** (one **classical** message, **deterministic** polynomial time verifier)
  - **QCMA** (one **classical** message, **quantum** polynomial time verifier)
  - **QMA** (one **quantum** message, **quantum** polynomial time verifier)
  - **IP** (polynomial **classical** round, **probabilistic** polynomial time verifier)
  - **QIP** (polynomial **quantum** round, **quantum** polynomial time verifier)



# Complexity Theory



# Complexity Theory for Non-decision Problem

**There are many types of problems other than decision problems**

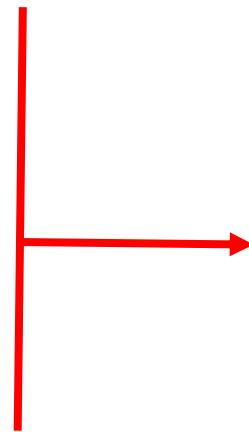
- Promise problems
- Search problems
- Counting problems
- Sampling problems
- Streaming problems
- Property testing
- Distribution testing
- .....



# Complexity Theory for Non-decision Problem

**There are many types of problems other than decision problems**

- Promise problems
- Search problems
- Counting problems
- Sampling problems
- Streaming problems
- Property testing
- Distribution testing
- .....



**Corresponding complexity classes:**

#P, FNP, PPAD, SampBQP, promiseNP, etc.

Various complexity classes and corresponding theory have been studied for these types of problems

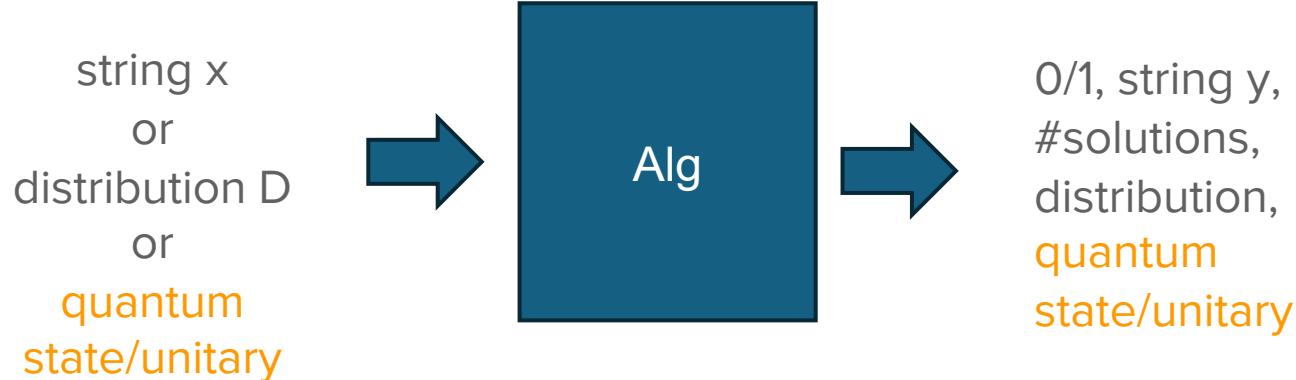
string x  
or  
distribution D



0/1, string y,  
#solutions,  
distribution...



# What Happen in Quantum World?



# What Happen in Quantum World?

More types of problems!

# Different Type of Quantum Computational Problem

|                           | Input type | Goal                         | Complexity Theory           |
|---------------------------|------------|------------------------------|-----------------------------|
| State synthesis problem   | classical  | synthesize quantum state     | [RY22]<br>[MY23]<br>[Ros24] |
| Unitary synthesis problem | classical  | synthesize unitary transform | [BEM+24]                    |
|                           |            |                              |                             |
|                           |            |                              |                             |
|                           |            |                              |                             |

# Different Type of Quantum Computational Problem

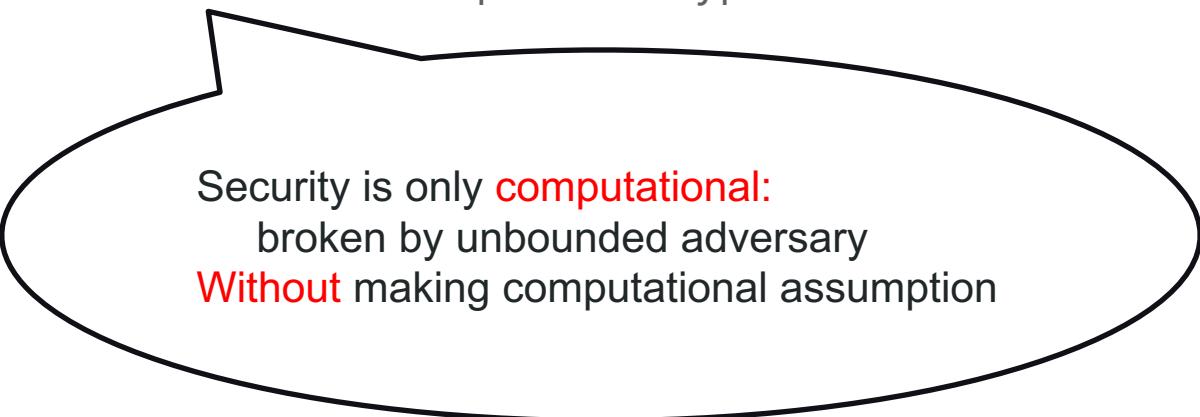
|                               | Input type  | Goal                         | Complexity Theory           |
|-------------------------------|-------------|------------------------------|-----------------------------|
| State synthesis problem       | classical   | synthesize quantum state     | [RY22]<br>[MY23]<br>[Ros24] |
| Unitary synthesis problem     | classical   | synthesize unitary transform | [BEM+24]                    |
| Pure quantum promise problem  | pure state  | decision                     | [KA04] and <b>this work</b> |
| Mixed quantum promise problem | mixed state | decision                     | [KA04] and <b>this work</b> |
|                               |             |                              |                             |

# Different Type of Quantum Computational Problem

|                                         | Input type       | Goal                         | Complexity Theory           |
|-----------------------------------------|------------------|------------------------------|-----------------------------|
| State synthesis problem                 | classical        | synthesize quantum state     | [RY22]<br>[MY23]<br>[Ros24] |
| Unitary synthesis problem               | classical        | synthesize unitary transform | [BEM+24]                    |
| Pure quantum promise problem            | pure state       | decision                     | [KA04] and <b>this work</b> |
| Mixed quantum promise problem           | mixed state      | decision                     | [KA04] and <b>this work</b> |
| Quantum-input unitary synthesis problem | pure/mixed state | synthesize unitary transform |                             |

# Why Quantum-Input Decision Problem? (Spoiler)

- Decision problems are easy to work with
  - naturally defined complexity classes
  - reduction, complete problems, oracle separation, barrier results
- Nature problems in quantum learning, property testing, crypto
- Useful to understand computational hardness in quantum crypto
  - Allow proving unconditional separation →  
Explain hardness in unconditional quantum crypto



Security is only **computational**:  
broken by unbounded adversary  
**Without** making computational assumption

# Why Quantum-Input Decision Problem? (Spoiler)

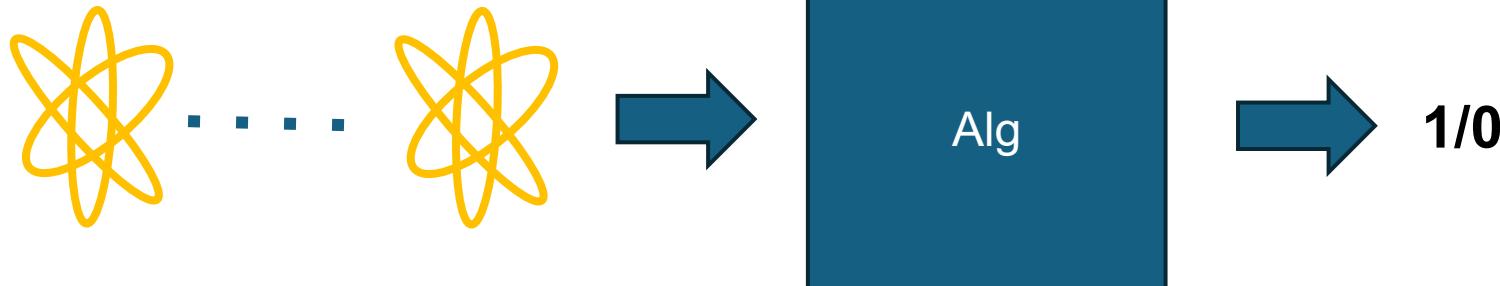
- Decision problems are easy to work with
  - naturally defined complexity classes
  - reduction, complete problems, oracle separation, barrier results
- Nature problems in quantum learning, property testing, crypto
- Useful to understand computational hardness in quantum crypto
  - Allow proving unconditional separation →  
Explain hardness in unconditional quantum crypto
- Different landscape comparing to traditional complexity theory

# Quantum Promise Problems (QPPs)

**Our goal:** Build complexity theory for quantum-input decision problem

**Input:** multiple copies of a quantum state

**output: 1 bit**



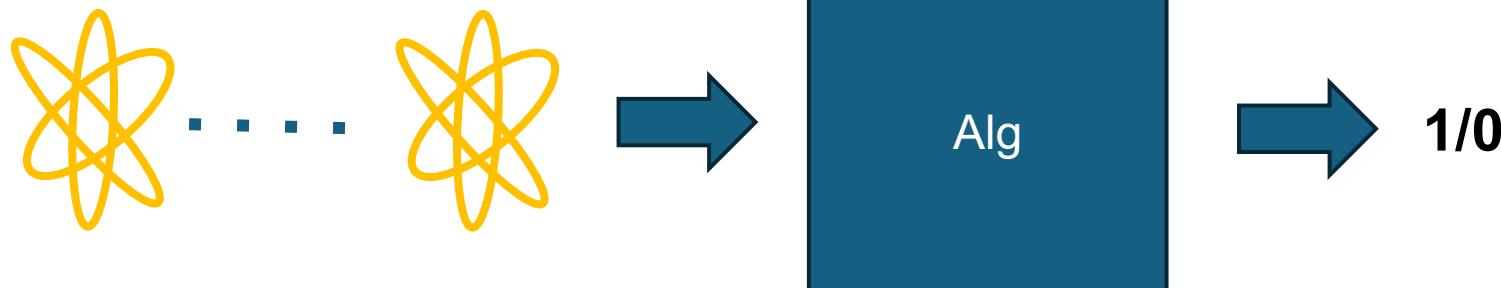
# Quantum Promise Problems (QPPs)

**Our goal:** Build complexity theory for quantum-input decision problem

- Quantum promise problems:
  - $L = (L_Y, L_N)$ :  $L_Y$  and  $L_N$  are subsets of quantum states
  - Given **copies of quantum state  $|s\rangle$** , decide if  $|s\rangle$  is in  $L_Y$  or  $L_N$

**Input:** multiple copies of a quantum state

**output: 1 bit**



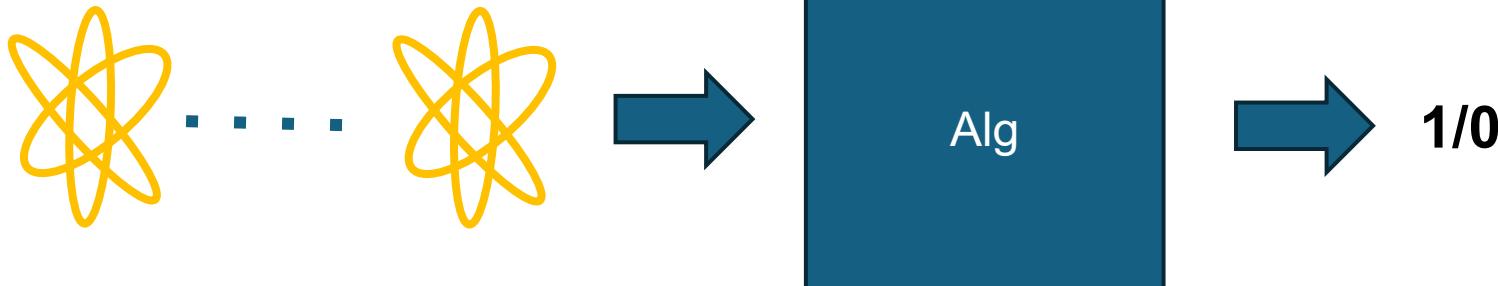
# Quantum Promise Problems (QPPs)

**Our goal:** Build complexity theory for quantum-input decision problem

- Quantum promise problems:
  - $L = (L_Y, L_N)$ :  $L_Y$  and  $L_N$  are subsets of quantum states
  - Given **copies of quantum state  $|s\rangle$** , decide if  $|s\rangle$  is in  $L_Y$  or  $L_N$
- Quantum input can be either **pure** or **mixed**

**Input:** multiple copies of a quantum state

**output: 1 bit**



# Quantum Promise Problems (QPPs)

**Our goal:** Build complexity theory for quantum-input decision problem

- Quantum promise problems:
  - $L = (L_Y, L_N)$ :  $L_Y$  and  $L_N$  are subsets of quantum states
  - Given **copies of quantum state  $|s\rangle$** , decide if  $|s\rangle$  is in  $L_Y$  or  $L_N$
- Quantum input can be either **pure** or **mixed**
- Capture property testing, promise problems, distribution test
- Standard complexity theory cannot fully characterize QPPs
  - BQP, BPP, NP are for “classical inputs” not “quantum states”

# Complexity Theory for QPPs

- Many interesting problems in quantum are in this form
  - **Testing:** product states, maximally mixed states, stabilizer states, matrix product state, etc.
  - **Learning:** small-depth states, shadow tomography, etc.

# Complexity Theory for QPPs

- Many interesting problems in quantum are in this form
  - **Testing:** product states, maximally mixed states, stabilizer states, matrix product state, etc.
  - **Learning:** small-depth states, shadow tomography, etc.
  - **Breaking security in quantum cryptography**

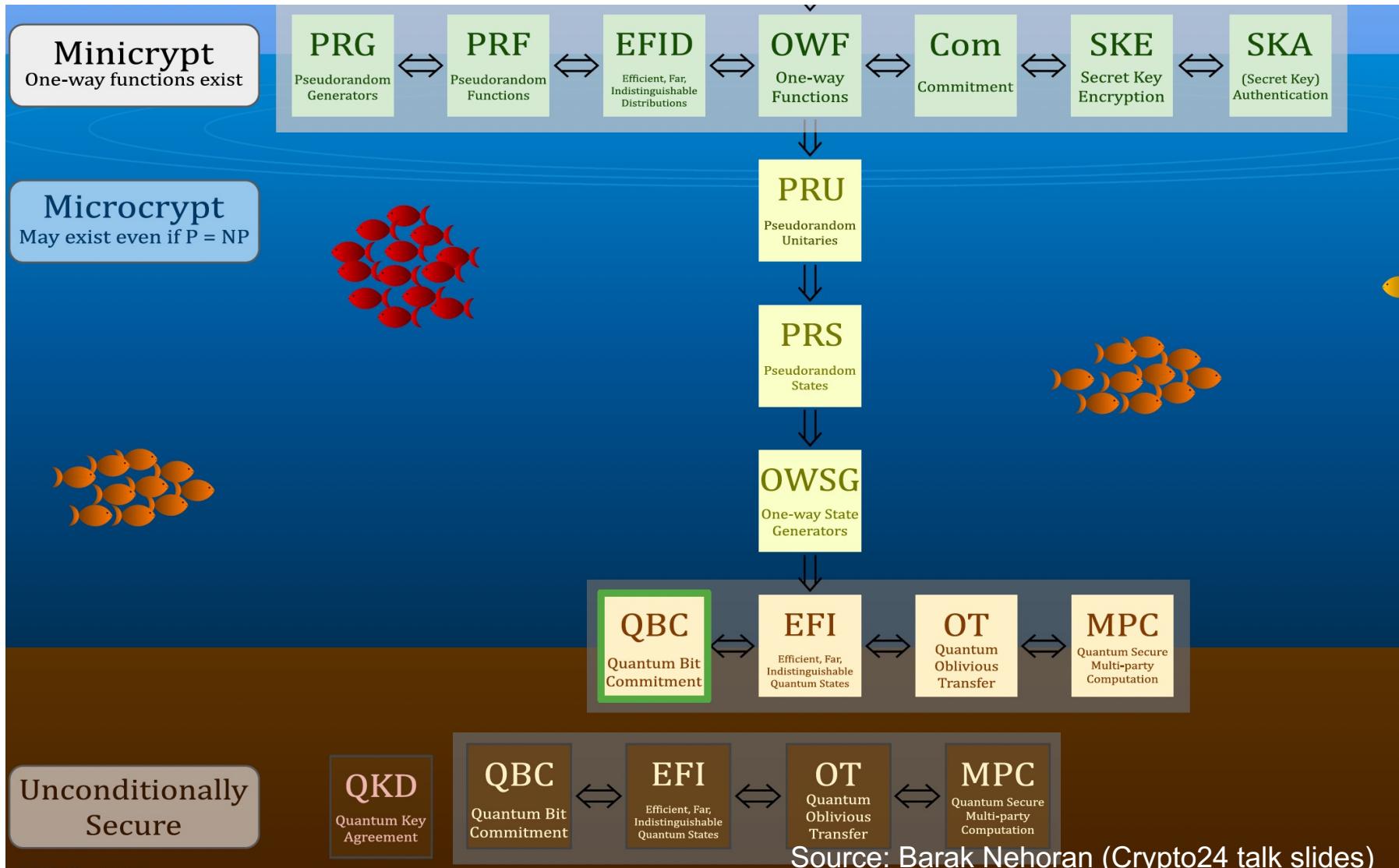
# Complexity Theory for QPPs

- Many interesting problems in quantum are in this form
  - **Testing:** product states, maximally mixed states, stabilizer states, matrix product state, etc.
  - **Learning:** small-depth states, shadow tomography, etc.
  - **Breaking security in quantum cryptography**



**Our first motivation:** Better characterize the security/hardness in quantum crypto primitives

# Quantum Primitives in Q Crypto

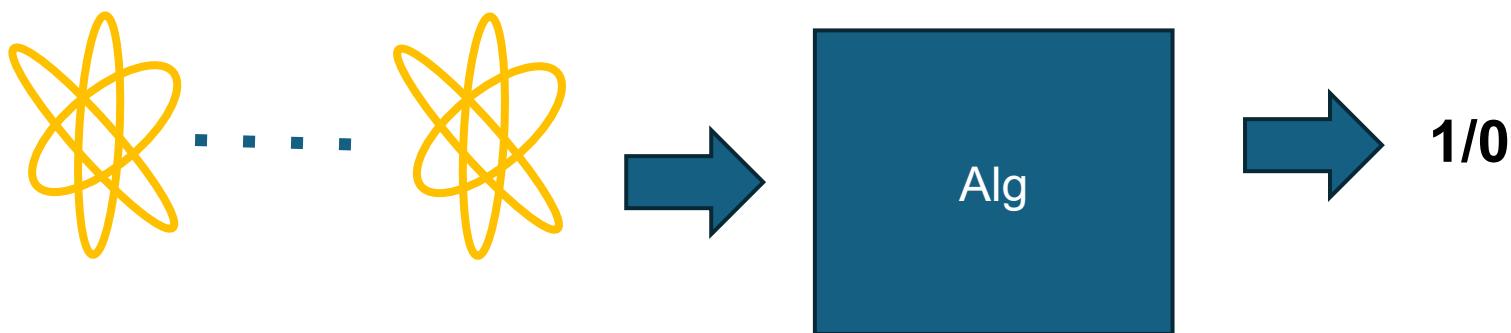


# Security of Quantum Crypto Primitive

- **Pseudorandom states (PRS):** Generator generates quantum states  $|Gk\rangle$  indistinguishable from Haar random states  $|R\rangle$
- **One-way state generator (OWSG):** Generator generates quantum states  $|Gx\rangle$  hard to invert to classical inputs  $x$
- **EFI pairs:** Generator generates two states  $p_0$  and  $p_1$  that are statistical far but computational indistinguishable

**Input:** copies of  $|S\rangle = G|k\rangle$  or  $|R\rangle$

**output:**  $|S\rangle = G|k\rangle$  or  $|R\rangle$

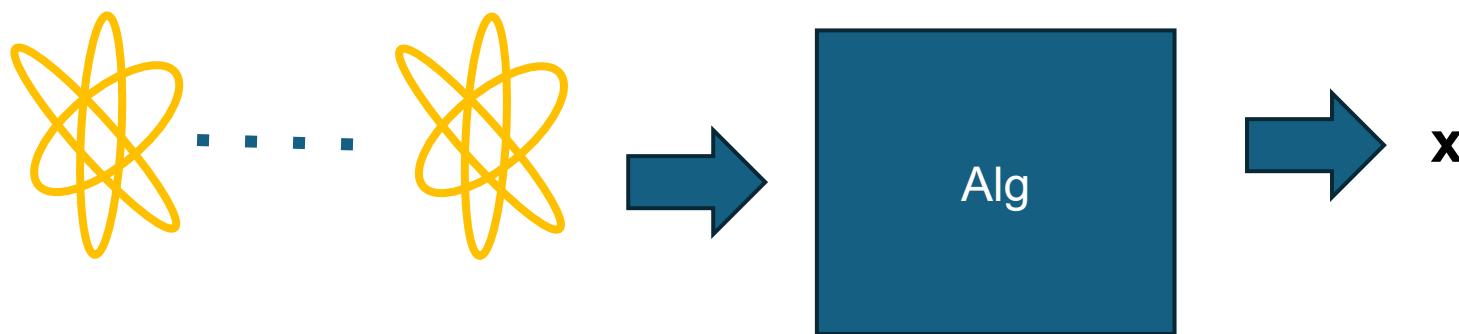


# Security of Quantum Crypto Primitive

- **Pseudorandom states (PRS):** Generator generates quantum states  $|G0\rangle$  indistinguishable from random states  $|R\rangle$
- **One-way state generator (OWSG):** Generator generates quantum states  $|Gx\rangle$  hard to invert to classical inputs  $x$
- **EFI pairs:** Generator generates two states  $p_0$  and  $p_1$  that are statistical far but computational indistinguishable

**Input:** copies of  $|S\rangle = G|x\rangle$

**output:**  $x$

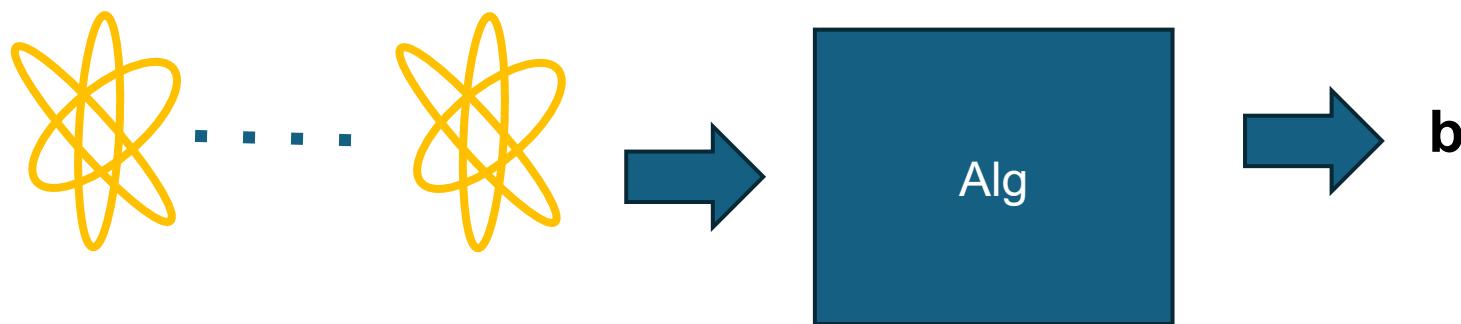


# Security of Quantum Crypto Primitive

- **Pseudorandom states (PRS):** Generator generates quantum states  $|G\rangle$  indistinguishable from random states  $|R\rangle$
- **One-way state generator (OWSG):** Generator generates quantum states  $|G(x)\rangle$  hard to invert to classical inputs  $x$
- **EPI pairs:** Generator generates two states  $\rho_0$  and  $\rho_1$  that are statistical far but computational indistinguishable

**Input:** copies of  $\rho_b$  for  $b=0$  or  $1$

**output: b**



# Complexity Classes for QPPs (pure version)

Let  $L = (L_Y, L_N)$

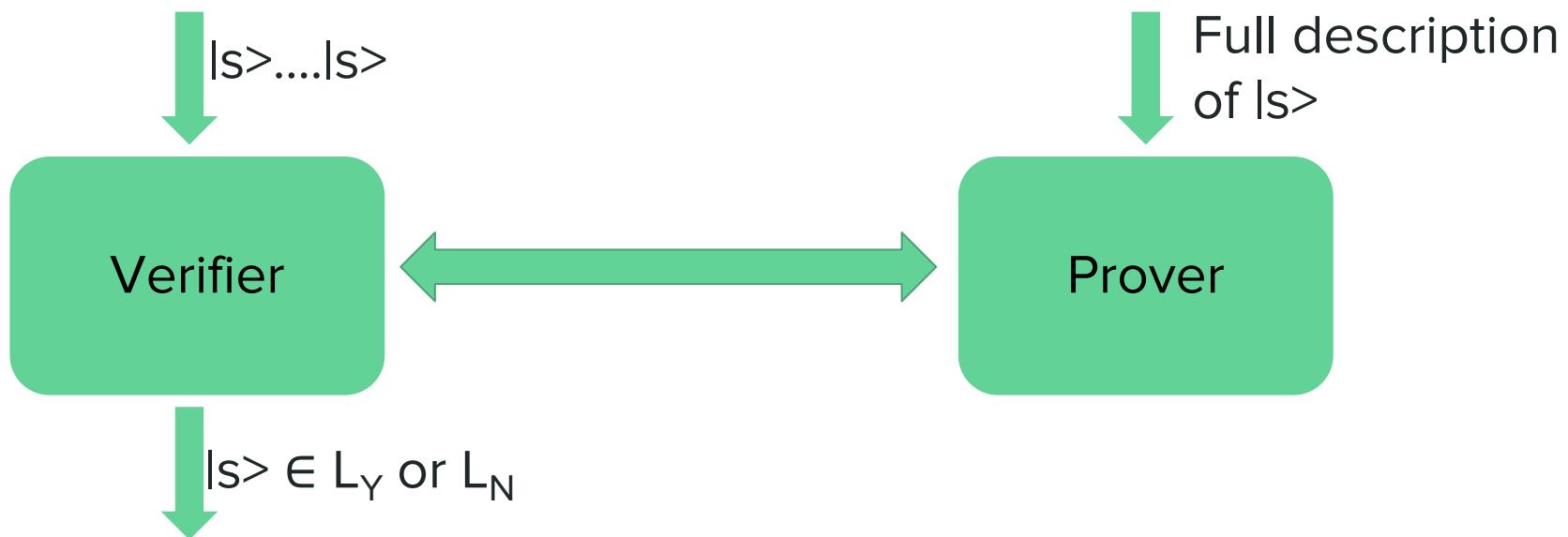
- **pBQP:** Given  $\text{poly}(n)$  copies of  $|s\rangle$ , decide  $|s\rangle$  in poly time
- **pPSPACE:** Given  $\text{poly}(n)$  copies of  $|s\rangle$ , decide  $|s\rangle$  in poly space
- **pQIP:** Verifier gets  $\text{poly}(n)$  copies of  $|s\rangle$ , decides  $|s\rangle$  with the help of a malicious unbounded prover
- **pQSZK<sub>hv</sub>:** QIP, and the honest verifier cannot get info. other than  $|s\rangle \in L_Y$



# Complexity Classes for QPPs (pure version)

Let  $L = (L_Y, L_N)$

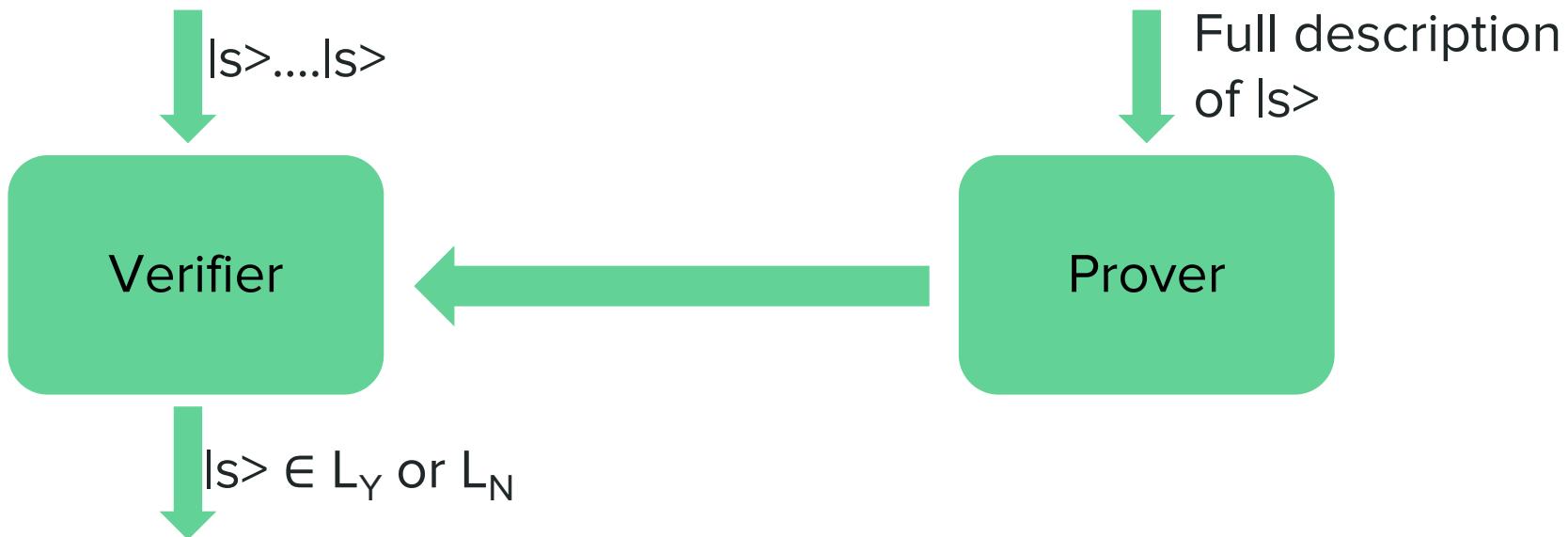
- **pBQP:** Given  $\text{poly}(n)$  copies of  $|s\rangle$ , decide  $|s\rangle$  in poly time
- **pPSPACE:** Given  $\text{poly}(n)$  copies of  $|s\rangle$ , decide  $|s\rangle$  in poly space
- **pQIP:** Verifier gets  $\text{poly}(n)$  copies of  $|s\rangle$ , decides  $|s\rangle$  with the help of a malicious unbounded prover
- **pQSZK<sub>hv</sub>:** QIP, and the honest verifier cannot get info. other than  $|s\rangle \in L_Y$



# Complexity Classes for QPPs (pure version)

pQMA and pQCMA are pQIP(one-round) with quantum or classical message from the prover

- **pQIP:** Verifier gets  $\text{poly}(n)$  copies of  $|s\rangle$ , decides  $|s\rangle$  with the help of a malicious unbounded prover
- **pQSZK<sub>hv</sub>:** QIP, and the honest verifier cannot get info. other than  $|s\rangle \in L_Y$



# Complexity Classes for QPPs (mixed version)

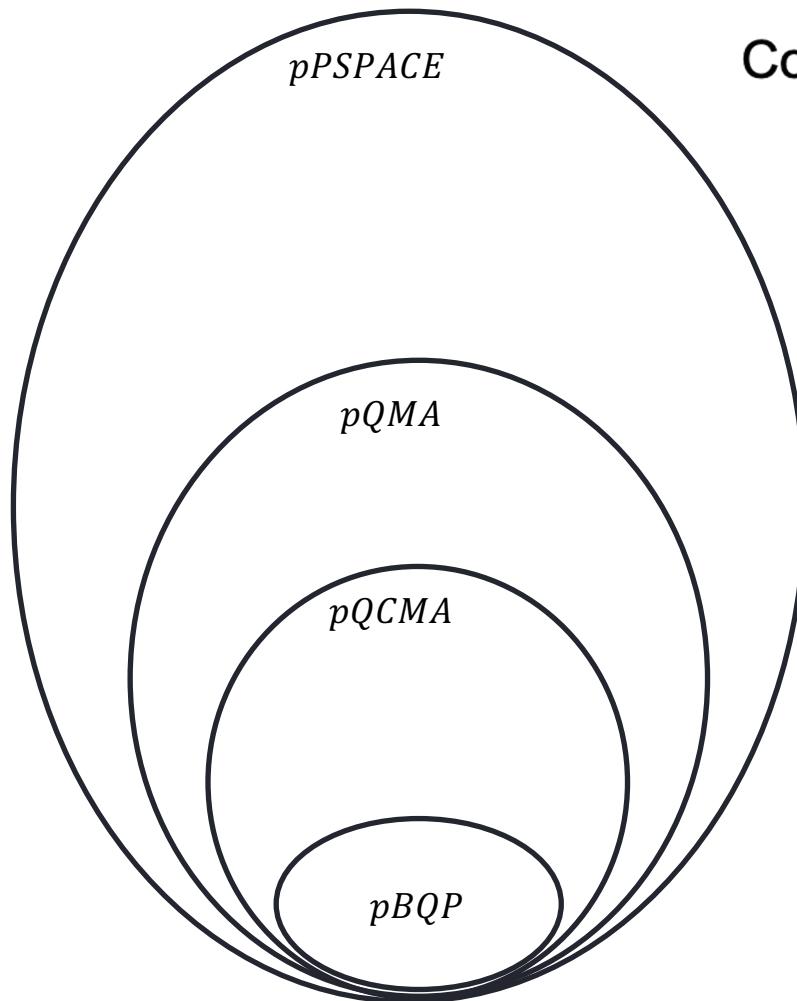
Let  $L = (L_Y, L_N)$

- **mBQP:** Given  $\text{poly}(n)$  copies of  $\rho_s$ , decide  $\rho_s$  in poly time
- **mPSPACE:** Given  $\text{poly}(n)$  copies of  $\rho_s$ , decide  $\rho_s$  in poly space
- **mQIP:** Verifier gets  $\text{poly}(n)$  copies of  $\rho_s$ , decides  $\rho_s$  with the help of a malicious unbounded prover
- **mQMA:** one round mQIP
- **mQCMA:** one round mQIP with classical message
- **mQSZK<sub>hv</sub>:** QIP & honest verifier cannot learn info. other than  $\rho_s \in L_Y$

# # of Copies Matter

- Our choice:
  - Single Machine (BQP, PSPACE): polynomial copies
  - Interactive Proofs (QIP, QSZK<sub>hv</sub>): prover unbounded copies
- Also reasonable to consider
  - PSPACE: unbounded copies (require oracle access to the input and able to discard qubits)
  - QIP, QSZK<sub>hv</sub> : prover has polynomial copies
  - lead to different complexity classes

# Landscape of Pure QPP Complexity Class

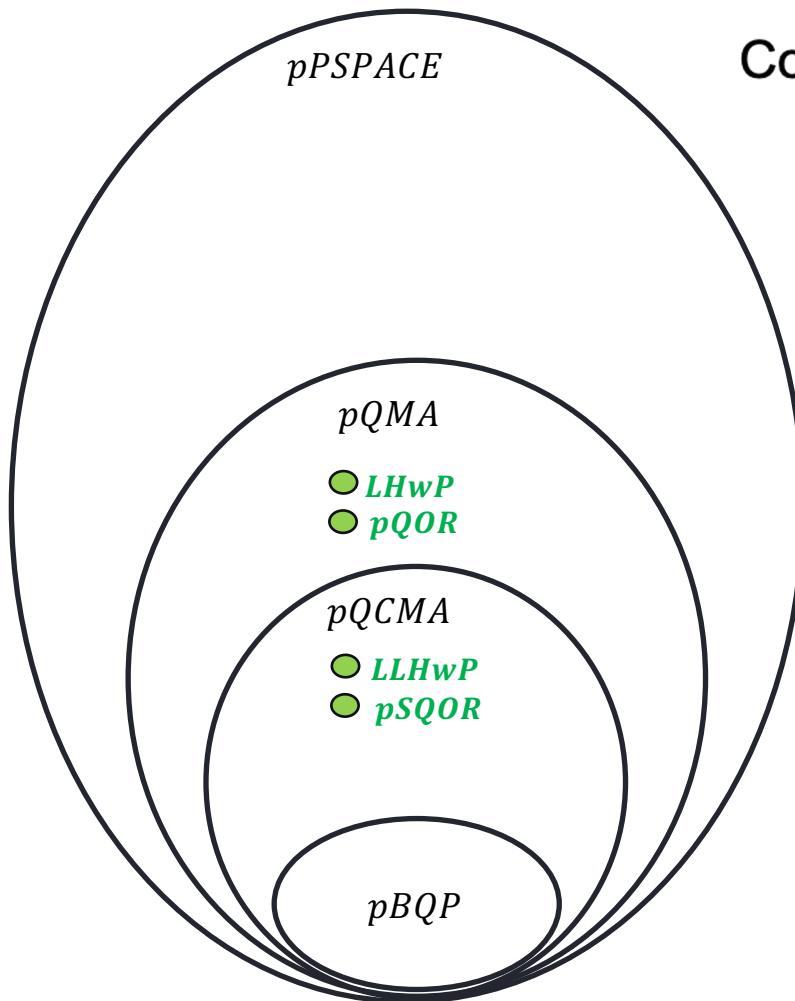


**Containment:**

$$pBQP \subseteq pQCMA \subseteq pQMA \subseteq pPSPACE$$

$pQMA \subseteq pPSPACE$  is not trivial because  $pPSPACE$  can only access polynomial copies of input state

# Landscape of Pure QPP Complexity Class



Containment:

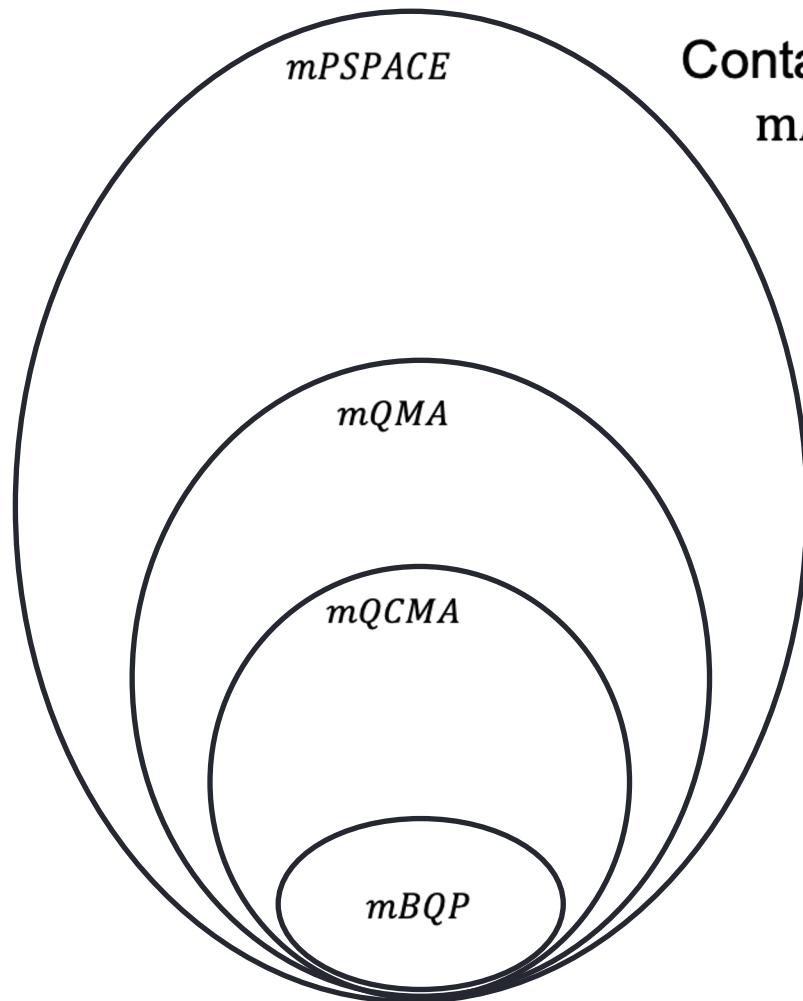
$$pBQP \subseteq pQCMA \subseteq pQMA \subseteq pPSPACE$$

Natural complete problem for  
 $pQCMA, pQMA$

$LHwP$  variant of local-  
Hamiltonian problem

$pQOR$   
 $pSQOR$  Quantum OR lemma

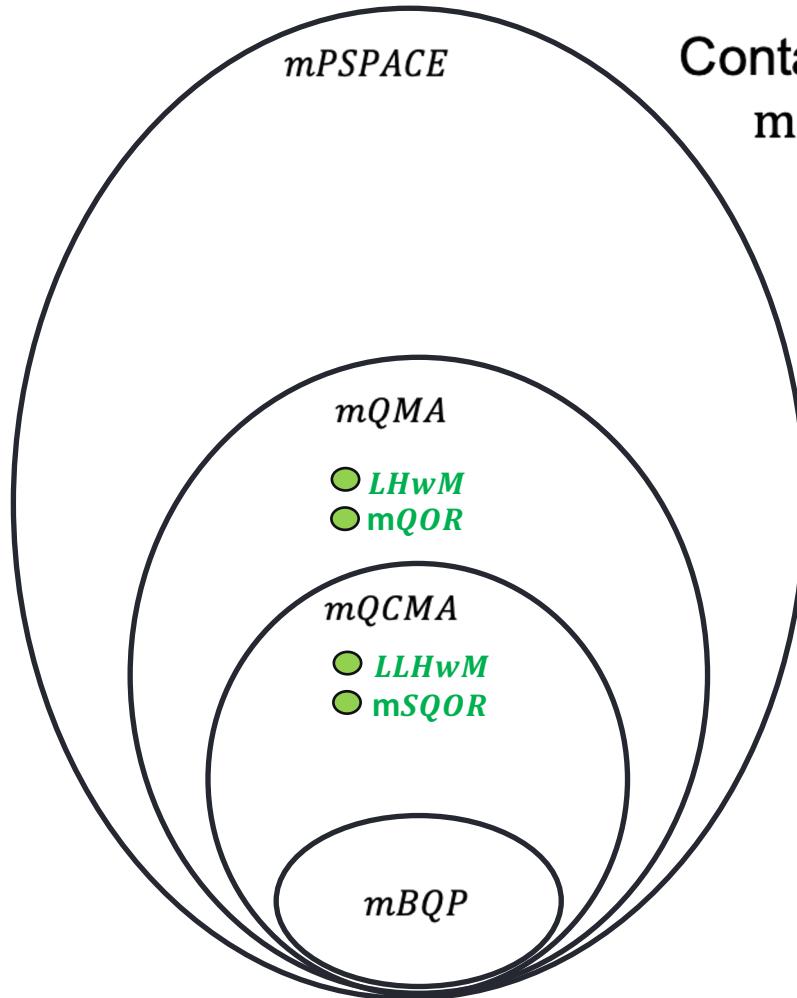
# Landscape of Mixed QPP Complexity Class



Containment:

$$mBQP \subseteq mQCMA \subseteq mQMA \subseteq mPSPACE$$

# Landscape of Mixed QPP Complexity Class



Containment:

$$mBQP \subseteq mQCMA \subseteq mQMA \subseteq mPSPACE$$

Natural complete problem for  
 $mQCMA, mQMA$

$LHwM$  variant of local-  
Hamiltonian problem

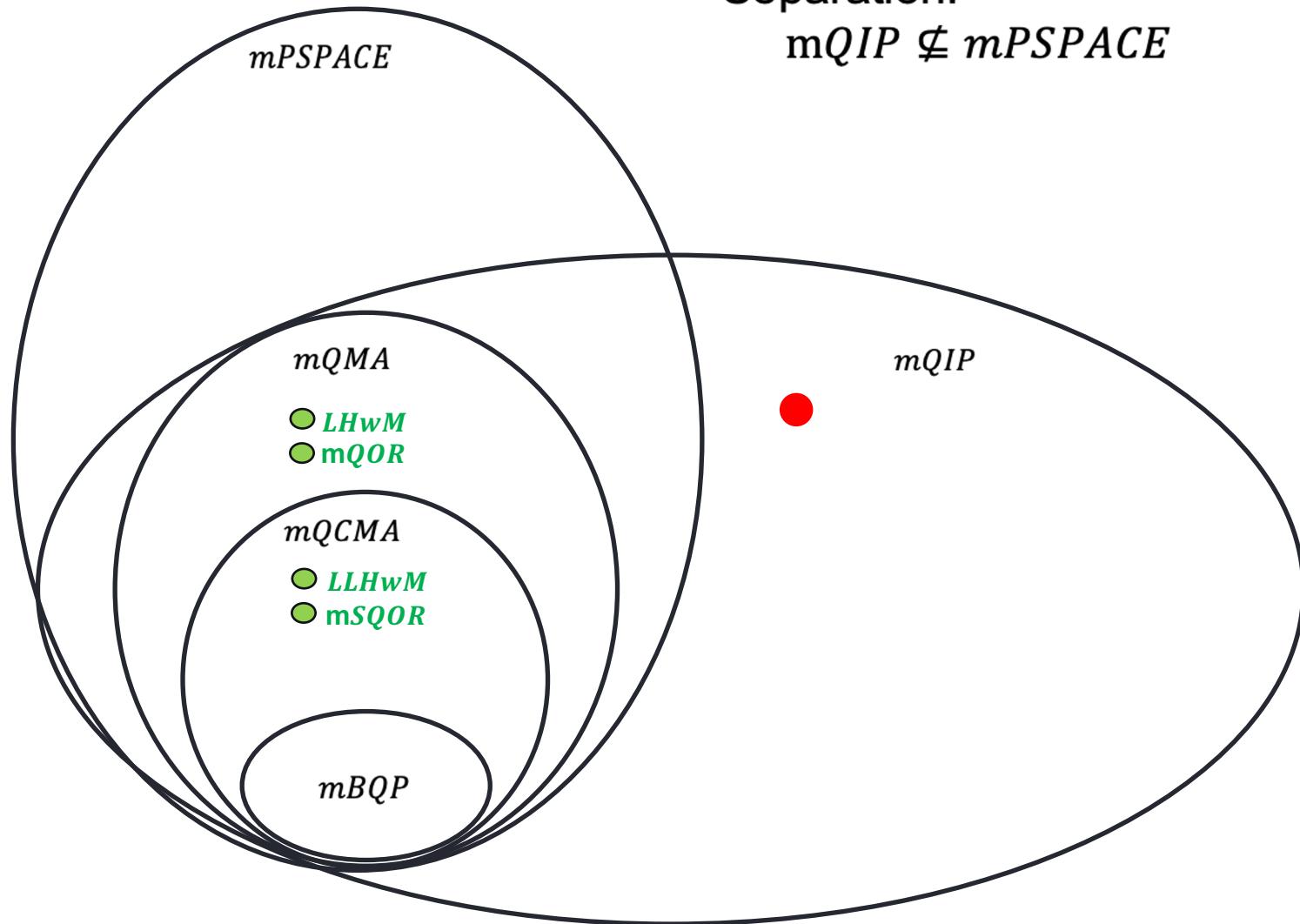
Mixed version is non-trivial to define

$mQOR$   
 $mSQO$

Quantum OR lemma

# Landscape of Mixed QPP Complexity Class

Separation:  
 $mQIP \not\subseteq mPSPACE$



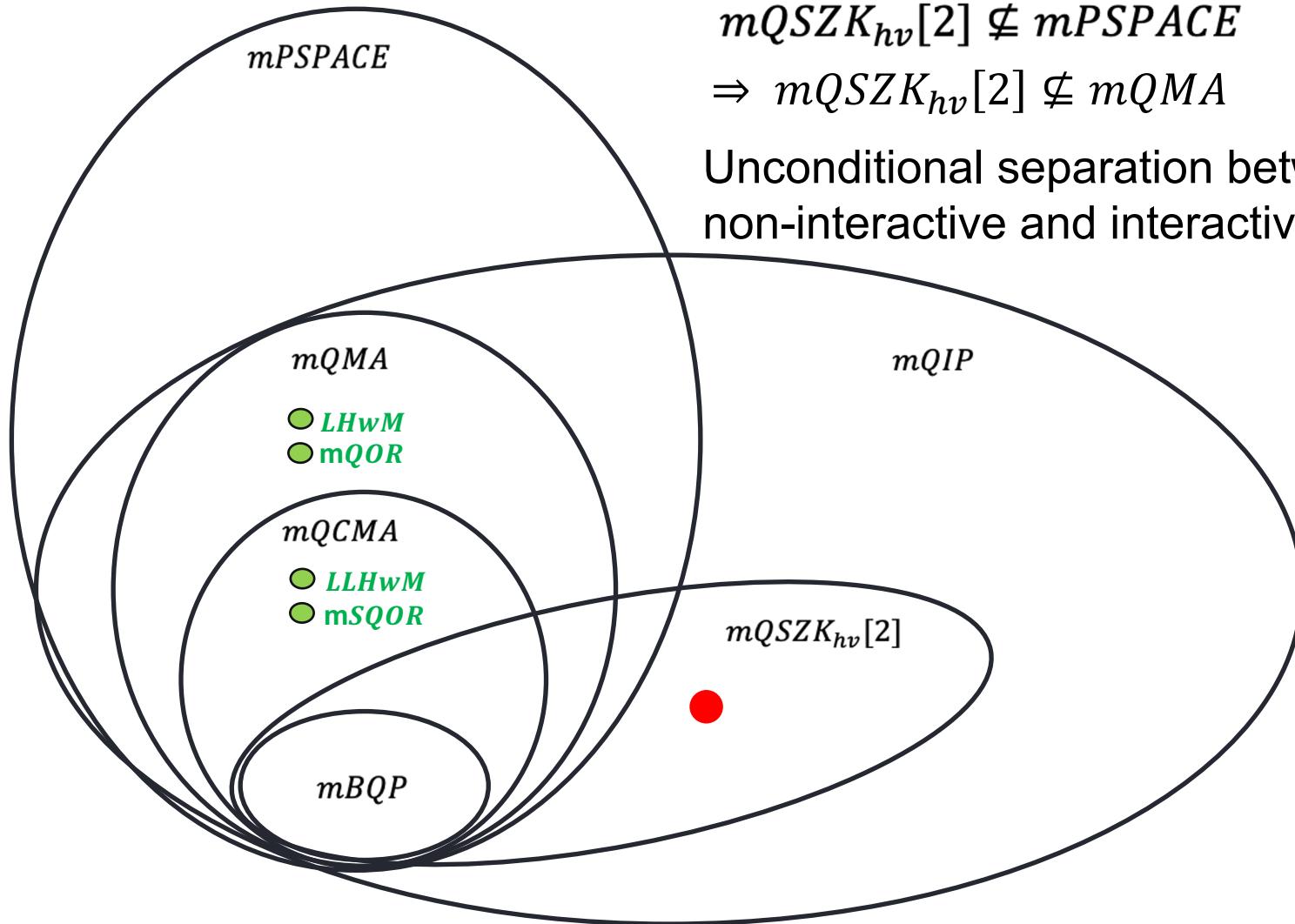
# Landscape of Mixed QPP Complexity Class

Separation:

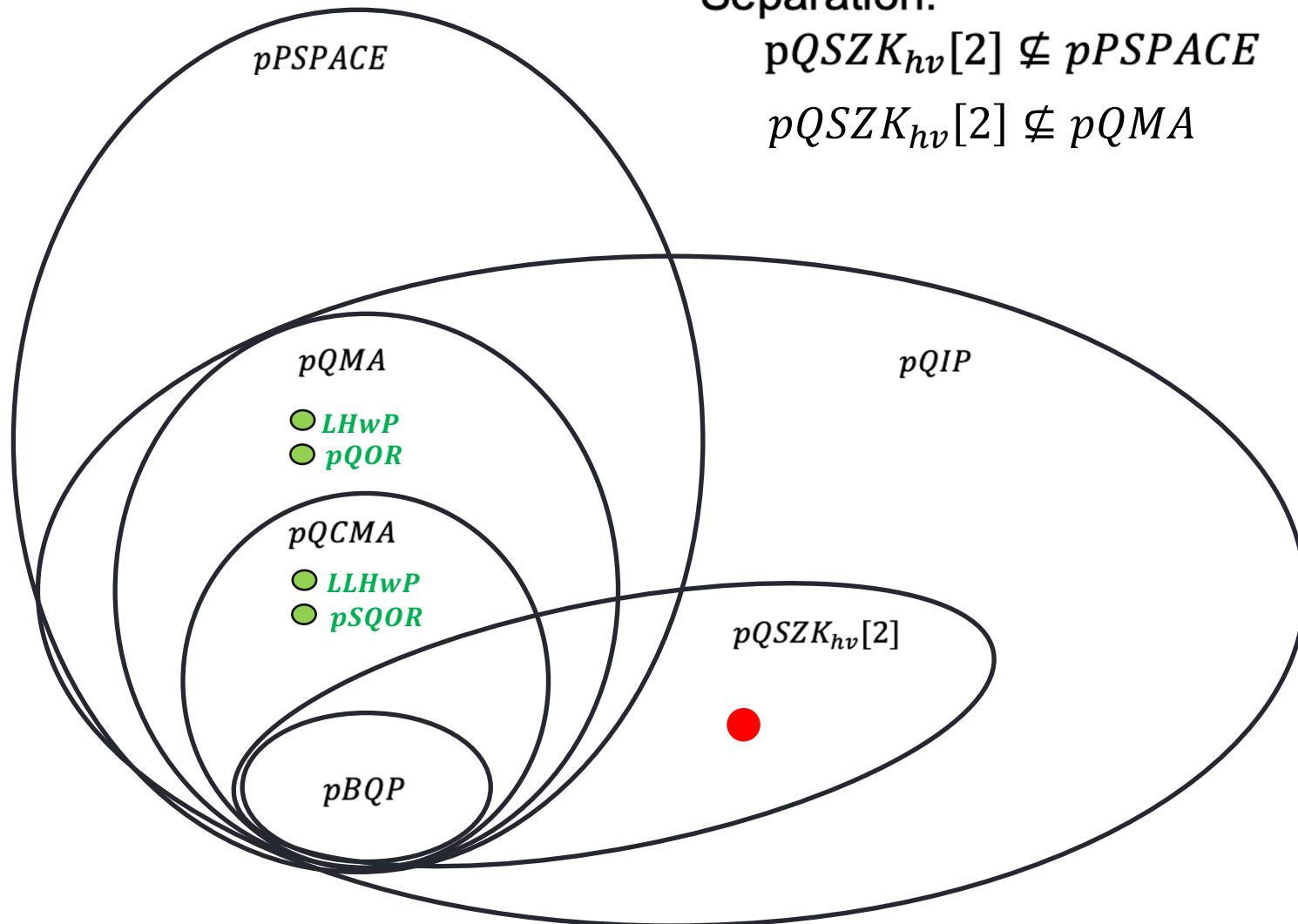
$$mQSZK_{hv}[2] \not\subseteq mPSPACE$$

$$\Rightarrow mQSZK_{hv}[2] \not\subseteq mQMA$$

Unconditional separation between  
non-interactive and interactive proof.



# Landscape of Pure QPP Complexity Class

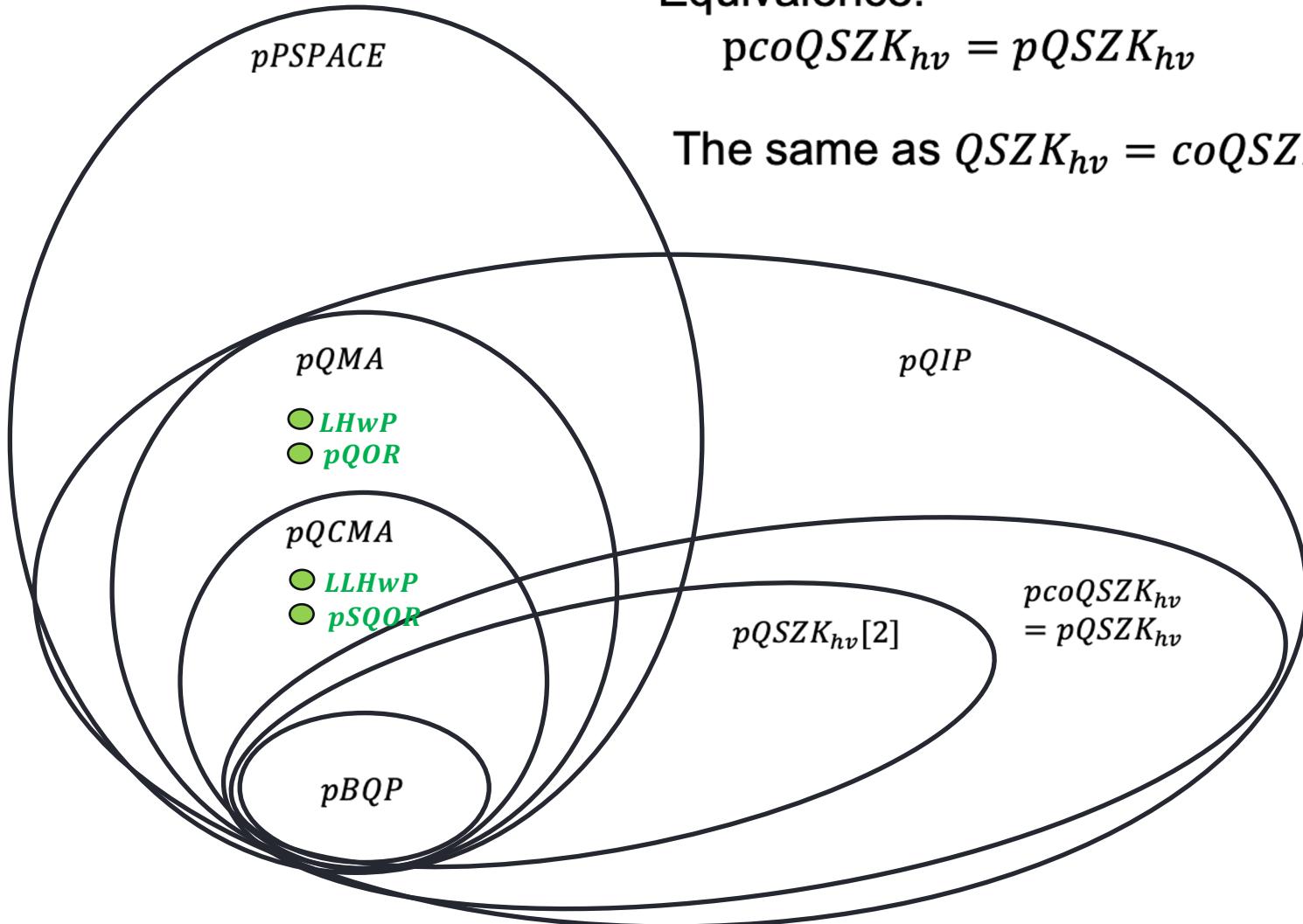


# Landscape of Pure QPP Complexity Class

Equivalence:

$$pcoQSZK_{hv} = pQSZK_{hv}$$

The same as  $QSZK_{hv} = coQSZK_{hv}$ .

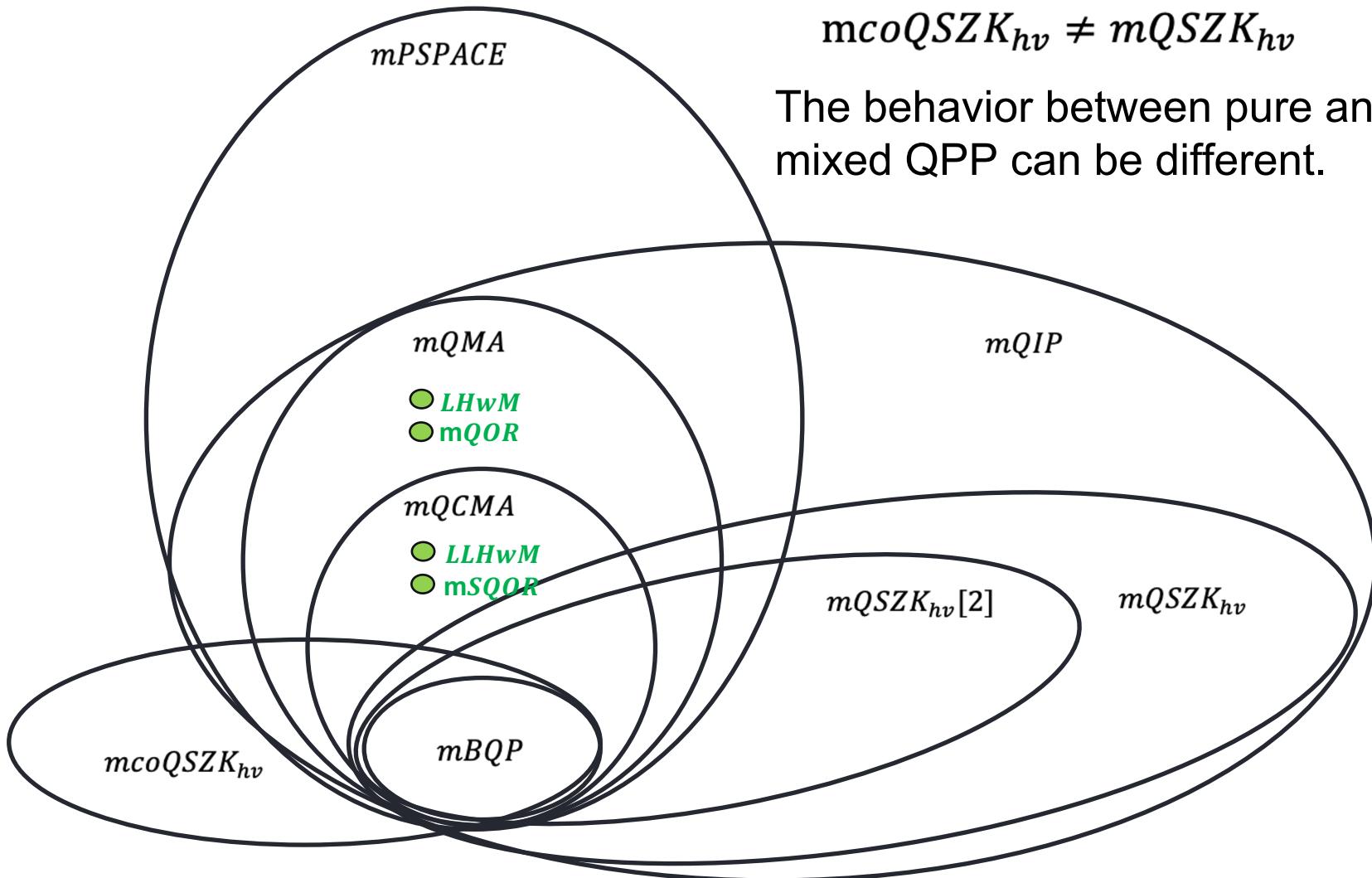


# Landscape of Mixed QPP Complexity Class

Separation:

$$mcoQSZK_{hv} \neq mQSZK_{hv}$$

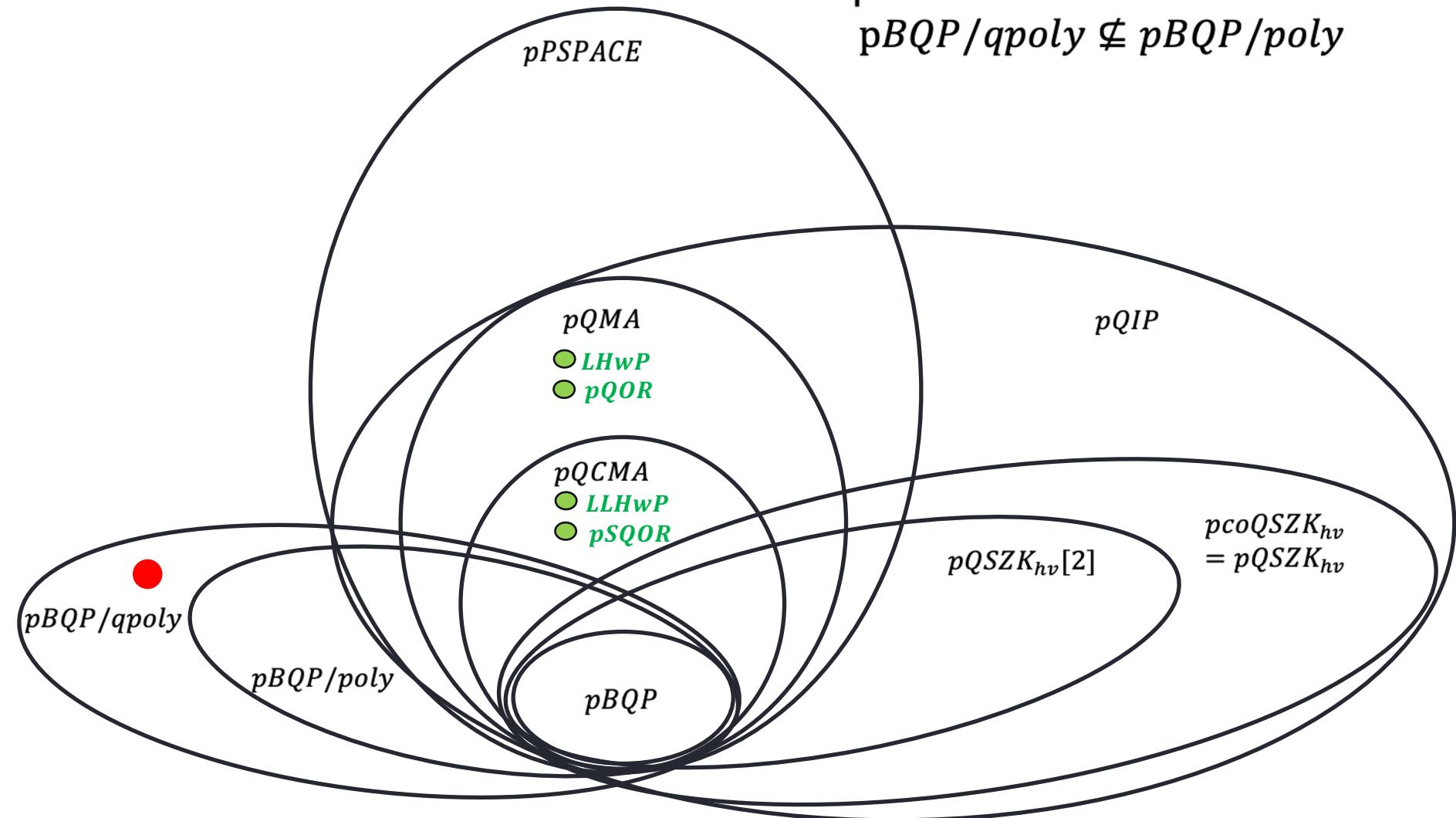
The behavior between pure and mixed QPP can be different.



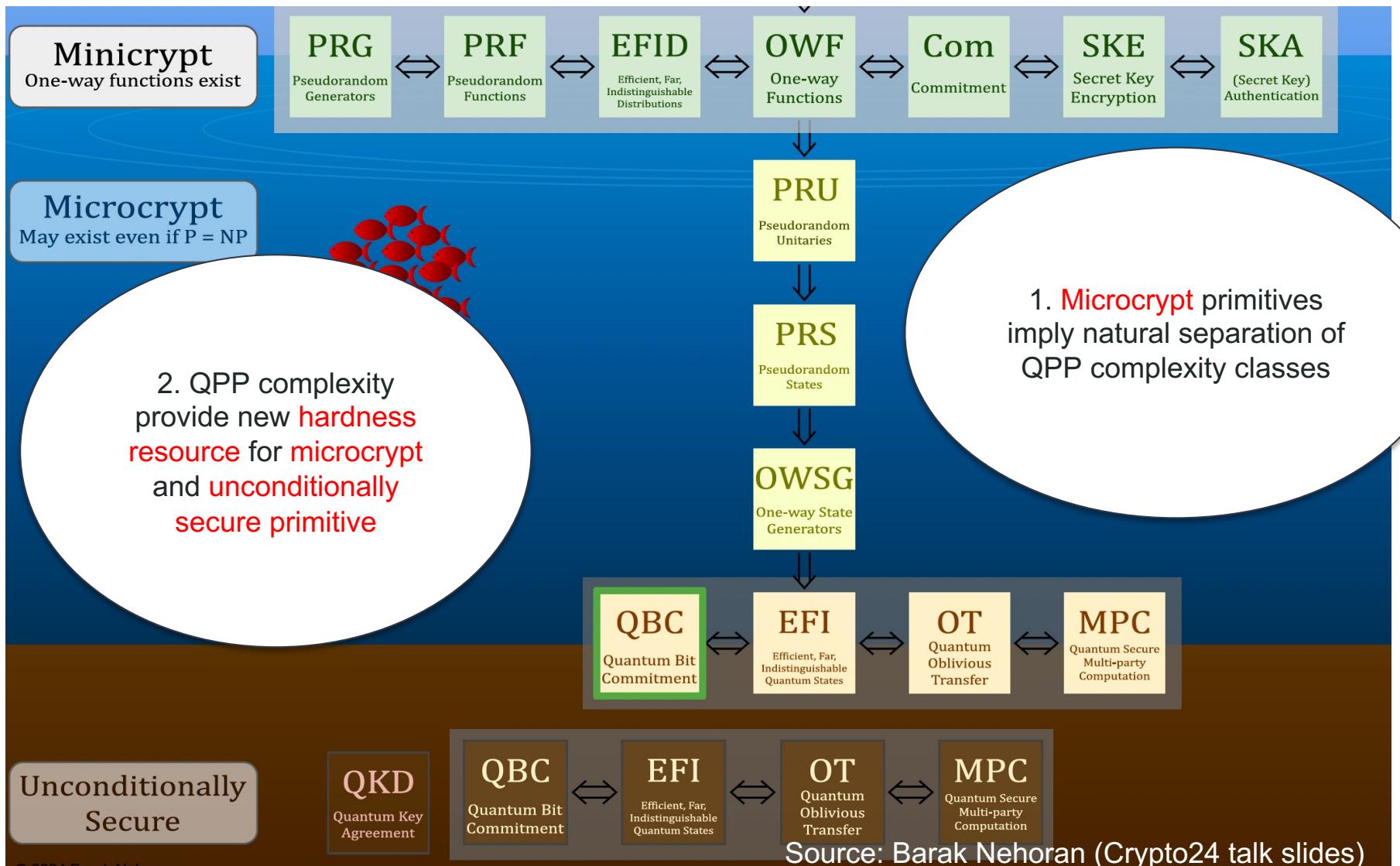
# Landscape of Pure QPP Complexity Class

Separation:

$$pBQP/qpoly \not\subseteq pBQP/poly$$



# Characterize Hardness of Quantum Crypto Primitive



# Our results: Applications to Crypto

## **Microcrypt:**

PRS, pOWSG

mOWSG

EFI

## **Unconditional quantum crypto:**

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (quantum auxiliary model)

# Our results: Applications to Crypto

## Microcrypt:

$$\begin{array}{ll} \text{PRS, pOWSG} & \xrightarrow{\hspace{1cm}} pBQP \neq pQCMA \\ \text{mOWSG} & \xrightarrow{\hspace{1cm}} mBQP \neq mQCMA \end{array}$$

By search to decision for  
for  $pQCMA$  and  $mQCMA$ .

EFI

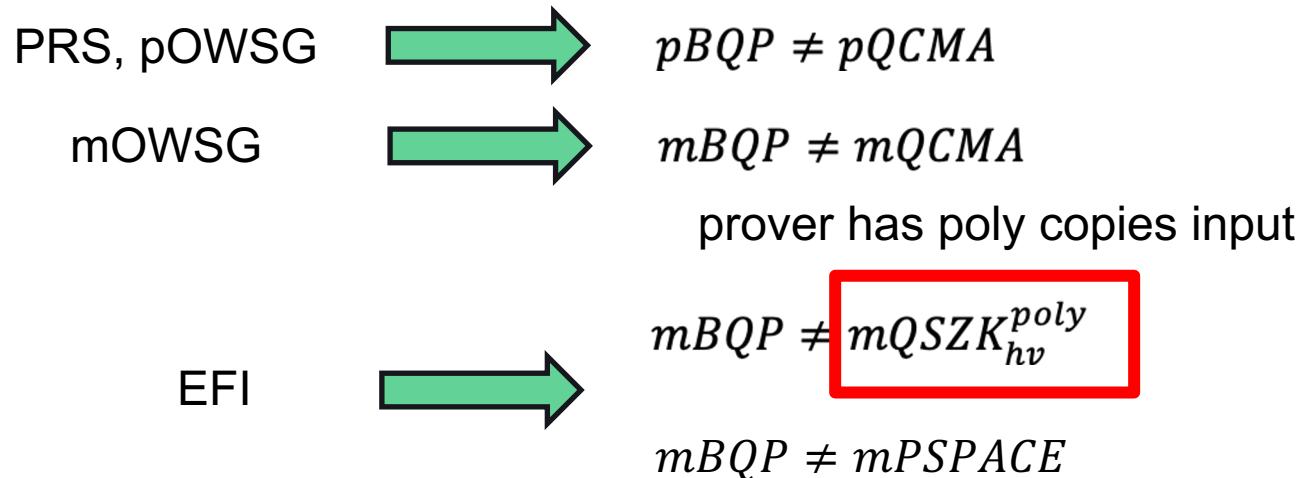
## Unconditional quantum crypto:

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)

# Our results: Applications to Crypto

## Microcrypt:



## Unconditional quantum crypto:

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)

# Our results: Applications to Crypto

## Microcrypt:

$$\text{PRS, pOWSG} \longrightarrow pBQP \neq pQCMA$$

$$\text{mOWSG} \longrightarrow mBQP \neq mQCMA$$

$$\text{EFI} \longrightarrow mBQP \neq mQSZK_{hv}^{\text{poly}}$$

$$mBQP \neq mPSPACE$$

## Unconditional quantum crypto:

$\Rightarrow$  relativization barrier for EFI!

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)

# Our results: Applications to Crypto

## Microcrypt:

PRS, pOWSG   $pBQP \neq pQCMA$

mOWSG   $mBQP \neq mQCMA$

avg $pQCZK_{hv}$  is hard  EFI   $mBQP \neq mQSZK_{hv}^{poly}$   
 $mBQP \neq mPSPACE$

## Unconditional quantum crypto:

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)

# Our results: Applications to Crypto

## Microcrypt:

PRS, pOWSG   $pBQP \neq pQCMA$

mOWSG   $mBQP \neq mQCMA$

avg $pQCZK_{hv}$  is hard  EFI   $mBQP \neq mQSZK_{hv}^{poly}$   
 $mBQP \neq mPSPACE$

## Unconditional quantum crypto:

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)

Computational binding, perfect hiding commitment (auxiliary-input model)

# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] construct a unconditional-secure computational hiding statistically binding commitment scheme in an **auxiliary-input model**.

# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] construct a unconditional-secure computational hiding statistically binding commitment scheme in an **auxiliary-input model**.

Auxiliary-input model: (setup phase)



# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] construct a unconditional-secure computational hiding statistically binding commitment scheme in an **auxiliary-input model**.

Auxiliary-input model: (commit phase)



# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] construct a unconditional-secure computational hiding statistically binding commitment scheme in an **auxiliary-input model**.

Auxiliary-input model: (reveal phase)

Committer

Send bit  $b$  and register  $R$   
to the receiver.

Bit  $b$ , Register  $R$



Receiver

Run Verify on register  
 $CR$ ,  $b$  and  $|\phi\rangle^{\otimes n}$ , then  
return the output.

# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] Auxiliary-input unconditional-secure computational hiding statistically binding commitment scheme
  - Secure against QPT adversary with quantum advice

## Unconditional Computational Hiding:

- C part of  $|\psi_0\rangle_{CR}$  and  $|\psi_1\rangle_{CR}$  are *only* computational indistinguishable
- *Without using any* computational assumption

# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] Auxiliary-input unconditional-secure **computational hiding statistically binding** commitment scheme
  - Secure against QPT adversary with **quantum advice**
- **Open question:** Auxiliary-input unconditional-secure **statistically hiding computational binding** commitment scheme?

# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] Auxiliary-input unconditional-secure **computational hiding statistically binding** commitment scheme
  - Secure against QPT adversary with **quantum advice**
- **Open question:** Auxiliary-input unconditional-secure **statistically hiding computational binding** commitment scheme?

Our results:

- Auxiliary-input unconditional-secure **perfect hiding computational binding** commitment
  - Secure against QPT adversary with **classical advice**

# Unconditional Secure Commitment Scheme

- [Qia24, MNY24] Auxiliary-input unconditional-secure **computational hiding statistically binding** commitment scheme
  - Secure against QPT adversary with **quantum advice**
- **Open question:** Auxiliary-input unconditional-secure **statistically hiding computational binding** commitment scheme?

Our results:

- Auxiliary-input unconditional-secure **perfect hiding computational binding** commitment
  - Secure against QPT adversary with **classical advice**
- Lead to unconditional  $pBQP/qpoly \neq pBQP/poly$

# Unconditional Separation and Unconditional Cryptography

# Unconditional Separation and Unconditional Cryptography

# Three Separation Results:

- Thm:  $mQSZK_{hv}[2] \not\subseteq mALL^{poly}$ 
  - Cor:  $mQIP \not\subseteq mPSPACE$
- Thm:  $pQSZK_{hv}[2] \not\subseteq pALL^{poly}$ 
  - Cor:  $pQIP \not\subseteq pPSPACE$
- Thm:  $pBQP/poly \neq pBQP/qpoly$



sample complexity  
type of separation  
 $p/mC_1 \not\subseteq p/mALL^{poly}$

computational type of  
separation

$p/mC_1 \subseteq p/mALL^{poly}$



unconditional cryptography

# Three Separation Results:

- *Thm:  $mQSZK_{hv}[2] \not\subseteq mALL^{poly}$* 
  - *Cor:  $mQIP \not\subseteq mPSPACE$*
- *Thm:  $pQSZK_{hv}[2] \not\subseteq pALL^{poly}$* 
  - *Cor:  $pQIP \not\subseteq pPSPACE$*
- *Thm:  $pBQP/poly \neq pBQP/qpoly$*

# Quantum Promise Problem $L_{mix}$

$$L_{mix} := (L_Y, L_N)$$

$$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$$

$$L_N = \{\frac{I}{2^n}\}$$

$$\rho_{half} := \frac{1}{2^{n-1}} \sum_{i \in \{0,1\}^{n-1}} |i\rangle\langle i|$$

$\mathbb{U}(n)$  be the set of n-qubit unitary

Thm:  $L_{mix} \notin mALL^{poly}$

Thm:  $L_{mix} \in mQSZK_{hv}[2]$

→  $mQSZK_{hv}[2] \not\subseteq mALL^{poly}$

Cor:  $mQIP \not\subseteq mPSPACE$

Theorem:  $L_{mix} \notin mALL^{poly}$

$$\rho_{half} := \frac{1}{2^{n-1}} \sum_{i \in \{0,1\}^{n-1}} |i\rangle\langle i|$$

- Thm [CHW07] : For any **polynomial**  $q(\cdot)$  and all sufficiently large  $n$ , for all algorithm  $C$ , the following hold:

$$|\Pr \left[ C \left( \left( \frac{I}{2^n} \right)^{\otimes q(n)} \right) = 1 \right] - \Pr_{U \leftarrow \text{Haar}_n} \left[ C \left( (U \rho_{half} U^\dagger)^{\otimes q(n)} \right) = 1 \right]| \leq \frac{q(n)}{2^n}$$



NO Instance



Random Yes Instance

Theorem:  $L_{mix} \in mQSZK_{hv}[2]$

$$L_{mix} := (L_Y, L_N)$$

$$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$$

$$L_N = \left\{ \frac{I}{2^n} \right\}$$

Graph non-Isomorphism Like Protocol:

Prover

$$b = 0$$

Verifier

$$b = 1$$

$$\left( \left( \frac{I}{2^n} \right)^{\otimes n}, \rho_{in}^{\otimes n} \right) \text{ vs } \left( \rho_{in}^{\otimes n}, \left( \frac{I}{2^n} \right)^{\otimes n} \right) \quad b \leftarrow \{0,1\}$$



$$b'$$



Accept if  $b' = b$

# Completeness

$$L_{mix} := (L_Y, L_N)$$

$$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$$

$$L_N = \left\{ \frac{I}{2^n} \right\}$$

Graph non-Isomorphism Like Protocol:

Prover

$$b = 0$$

Verifier

$$b = 1$$

$$\left( \left( \frac{I}{2^n} \right)^{\otimes n}, \rho_{in}^{\otimes n} \right) \text{ vs } \left( \rho_{in}^{\otimes n}, \left( \frac{I}{2^n} \right)^{\otimes n} \right) \quad b \leftarrow \{0,1\}$$



$$b'$$



Accept if  $b' = b$

Completeness:  $1 - \text{negl}(n)$ :

Trace distance between  $\left( \frac{I}{2^n} \right)^{\otimes n}$  and  $\rho_{in}^{\otimes n}$  is  $1 - \text{negl}(n)$ .

# Soundness

$$L_{mix} := (L_Y, L_N)$$

$$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$$

$$L_N = \left\{ \frac{I}{2^n} \right\}$$

Graph non-Isomorphism Like Protocol:

Prover

$$b = 0$$

Verifier

$$b = 1$$

$$\left( \left( \frac{I}{2^n} \right)^{\otimes n}, \rho_{in}^{\otimes n} \right) \text{ vs } \left( \rho_{in}^{\otimes n}, \left( \frac{I}{2^n} \right)^{\otimes n} \right) \quad b \leftarrow \{0,1\}$$



$$b'$$



Accept if  $b' = b$

Soundness:  $\frac{1}{2}$

Because  $\rho_{in} = \frac{I}{2^n}$ , the case  $b = 0$  or  $1$  are identical.

# Statistical HV Zero Knowledge

$$L_{mix} := (L_Y, L_N)$$

$$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$$

$$L_N = \left\{ \frac{I}{2^n} \right\}$$

Graph Non-Isomorphism Like Protocol:

Prover

$$b = 0$$

Verifier

$$b = 1$$

$$\left( \left( \frac{I}{2^n} \right)^{\otimes n}, \rho_{in}^{\otimes n} \right) \text{ vs } \left( \rho_{in}^{\otimes n}, \left( \frac{I}{2^n} \right)^{\otimes n} \right) \quad b \leftarrow \{0,1\}$$



$$b'$$



Accept if  $b' = b$

Statistical HV zero knowledge:

Similar to Graph Non-Isomorphism Protocol.

# Three Separation Results:

- *Thm:  $mQSZK[2] \not\subseteq mALL^{poly}$* 
  - *Cor:  $mQIP \not\subseteq mPSPACE$*
- *Thm:  $pQSZK[2] \not\subseteq pALL^{poly}$* 
  - *Cor:  $pQIP \not\subseteq pPSPACE$*
- *Thm:  $pBQP/poly \neq pBQP/qpoly$*

Quantum Promise Problem  $L_{pure}$

$L_{mix} := (L_Y, L_N)$

$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$

$L_N = \{\frac{I}{2^n}\}$

purify 

$$\rho_{half} := \frac{1}{2^{n-1}} \sum_{i \in \{0,1\}^{n-1}} |i\rangle\langle i|$$

$L_{pure} := (L_Y, L_N)$

$L_Y := \{U^1 \otimes U^2 | HALF\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$

$L_N := \{I \otimes U | EPR\rangle, \forall U \in \mathbb{U}(n)\}$

$$|EPR\rangle := \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle|i\rangle$$

$$|HALF\rangle := \frac{1}{\sqrt{2^{n-1}}} \sum_{i \in \{0,1\}^{n-1}} |0i\rangle|0i\rangle$$

Thm:  $L_{pure} \notin pALL^{poly}$

Thm:  $L_{pure} \in pQSZKhv[2]$

  $pQSZKhv[2] \not\subseteq pALL^{poly}$

Cor:  $pQIP \not\subseteq pPSPACE$

# Theorem: $L_{pure} \notin pALL^{poly}$

- Theorem [CWZ24] (informal) : Let  $L = (L_Y, L_N)$  be a mixed QPP. Let  $L'$  be the purified version of  $L$ . Then sample complexity for deciding  $L$  and  $L'$  are the same.

$$L_{mix} := (L_Y, L_N)$$

$$L_Y := \{U\rho_{half}U^\dagger, \forall U \in \mathbb{U}(n)\}$$

$$L_N = \{\frac{I}{2^n}\}$$



$$L_{pure} := (L_Y, L_N)$$

$$L_Y := \{U^1 \otimes U^2 |HALF\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$

$$L_N := \{I \otimes U |EPR\rangle, \forall U \in \mathbb{U}(n)\}$$

$$L_{pure} := (L_Y, L_N)$$

$$L_Y := \{U^1 \otimes U^2 | \text{HALF}\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$

$$L_N := \{(I \otimes U) | \text{EPR}\rangle, \forall U \in \mathbb{U}(n)\}$$

Theorem:  $L_{pure} \in pQSZKhv[2]$

The same Graph Non-Isomorphism Like Protocol  
except that we set  $\rho_{in}$  = first half of  $|\phi_{in}\rangle$ .

Prover

$$b = 0$$

$$b = 1$$

Verifier

$$(\left(\frac{I}{2^n}\right)^{\otimes n}, \rho_{in}^{\otimes n}) \text{ vs } (\rho_{in}^{\otimes n}, \left(\frac{I}{2^n}\right)^{\otimes n}) \quad b \leftarrow \{0,1\}$$



$$b'$$



Accept if  $b' = b$

# Three Separation Results:

- *Thm:  $mQSZK[2] \not\subseteq mALL^{poly}$* 
  - *Cor:  $mQIP \not\subseteq mPSPACE$*
- *Thm:  $pQSZK[2] \not\subseteq pALL^{poly}$* 
  - *Cor:  $pQIP \not\subseteq pPSPACE$*
- *Thm:  $pBQP/poly \neq pBQP/qpoly$*

# Quantum Promise Problem $L_{pure^*}(\{U^*\})$

$$L_{pure} := (L_Y, L_N)$$

$$L_Y := \{U^1 \otimes U^2 | HALF\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$

$$L_N := \{I \otimes U | EPR\rangle, \forall U \in \mathbb{U}(n)\}$$

Fix a hard  $U^*$



$$L_{pure^*}(\{U^*\}) := (L_Y, L_N)$$

$$L_Y := \{U^1 \otimes U^2 | HALF\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$

$$L_N := \{I \otimes U^* | EPR\rangle\}$$

$$|EPR\rangle := \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle |i\rangle$$

$$|HALF\rangle := \frac{1}{\sqrt{2^{n-1}}} \sum_{i \in \{0,1\}^{n-1}} |0i\rangle |0i\rangle$$

Thm: Exist  $\{U^*\}$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

Thm: For all  $\{U^*\}$ ,  $L_{pure^*}(\{U^*\}) \in pBQP/qpoly$

Cor:  $pBQP/poly \neq pBQP/qpoly$

Thm: For all  $\{U^*\}$ ,  $L_{pure^*}(\{U^*\}) \in pBQP/qpoly$

$$L_{pure^*} := (L_Y, L_N)$$

Use Swap Test

$$L_Y := \{U^1 \otimes U^2 | \text{HALF}\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$
$$L_N := \{(I \otimes U^*) | \text{EPR}\rangle\}$$

- Quantum advice:  $|\phi^*\rangle := (I \otimes U^*)|EPR\rangle$
- Algorithm: input  $|\phi_{in}\rangle$ , advice  $|\phi^*\rangle$ 
  - Apply swap test to  $|\phi_{in}\rangle$  and  $|\phi^*\rangle$
  - Output 1 if swap test fail
  - Otherwise output 0.
- Completeness:  $\geq \frac{1}{8}$  (because  $F(|\phi_{in}\rangle, |\phi^*\rangle) \leq \frac{3}{4}$ )
- Soundness: = 0

Thm: Exist  $\{U^*\}$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

$$L_{pure} := (L_Y, L_N)$$

$$\begin{aligned} L_Y &:= \{U^1 \otimes U^2 | \text{HALF}\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\} \\ L_N &:= \{I \otimes U | \text{EPR}\rangle, \forall U \in \mathbb{U}(n)\} \end{aligned}$$

- [CWZ24] & [CHW07] => **average case** hardness of  $L_{pure}$
- For any polynomial  $q(\cdot)$  and all sufficiently large  $n$ , for all algorithm  $C$ , the following hold:

$$| \Pr_{U \leftarrow \text{Haar}_n} [C(I \otimes U | \text{EPR}\rangle)^{\otimes q(n)} = 1] - \Pr_{U^1, U^2 \leftarrow \text{Haar}_n} [C(U^1 \otimes U^2 | \text{HALF}\rangle)^{\otimes q(n)} = 1] | \leq \frac{q(n)}{2^n}$$

Uniformly Random  
No Instance

Uniformly Random  
Yes Instance

Thm: Exist  $\{U^*\}$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

- By Haar random concentration argument in [Kre21] :
- For any polynomial  $q(\cdot)$  and all sufficiently large  $n$ , for all algorithm  $C$ , with probability  $1 - \exp(-2^{\frac{n}{4}})$  over  $\mathbf{U} \leftarrow \text{Haar}_n$  such that:

$$|Pr[C(I \otimes \mathbf{U} |EPR\rangle)^{\otimes q(n)}] = 1]$$

$$- \Pr_{U^1, U^2 \leftarrow \text{Haar}_n} [C(U^1 \otimes U^2 |HALF\rangle)^{\otimes q(n)} = 1] \leq \frac{q(n)}{2^n} + 2^{-\frac{n}{3}}$$

Thm: Exist  $\{U^*\}$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

- Switch quantifier by a union bound:
- For any polynomial  $q(\cdot)$  and all sufficiently large  $n$ , **there exist  $U^*$  such that for all polynomial size circuits  $C$**

$$\begin{aligned} & |Pr [C(I \otimes U^* |EPR\rangle)^{\otimes q(n)}] = 1] \\ & - \Pr_{U^1, U^2 \leftarrow \text{Haar}_n} [C(U^1 \otimes U^2 |HALF\rangle)^{\otimes q(n)}] = 1] | \leq \frac{q(n)}{2^n} + 2^{-\frac{n}{3}} \end{aligned}$$

# Unconditional Separation and Unconditional Cryptography

Thm: There exist a commitment scheme satisfy **computational** sum-binding\* and **perfect** hiding in auxiliary-input model.

\*secure against non-uniform adv with classical advice

## Construction – Auxiliary Input State

$|\phi\rangle := I \otimes U^* |EPR\rangle$     Fix  $U^*$  in  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$



# Construction – Commit Algorithm

$|\phi\rangle := I \otimes U^\star |EPR\rangle$  Fix  $U^\star$  in  $L_{pure^\star}(\{U^\star\}) \notin pBQP/poly$

**Com**(b,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$|\psi_0\rangle_{CR} := |EPR\rangle_{C_1R_1} \cdots |EPR\rangle_{C_nR_n}$  Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .  
 $|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$

Committer

Prepare  $|\psi_b\rangle_{CR}$  &  
send register C

Register C



Receiver

# Construction – Verify Algorithm

$|\phi\rangle := I \otimes U^\star |EPR\rangle$  Fix  $U^\star$  in  $L_{pure^\star}(\{U^\star\}) \notin pBQP/poly$

**Com**(b,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$|\psi_0\rangle_{CR} := |EPR\rangle_{C_1R_1} \cdots |EPR\rangle_{C_nR_n}$  Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .  
 $|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$

**Verify**(b,  $|\phi\rangle^{\otimes n}$ , CR)  $\rightarrow \perp/\top$ :

b = 0: check CR ==  $|\psi_0\rangle$  by  $\{|\psi_0\rangle\langle\psi_0|, I - |\psi_0\rangle\langle\psi_0|\}$ .  
b = 1: check CR ==  $|\psi_1\rangle$  by swap-test.

Committer

Send b & register R

Bit b, Register R

Receiver

Run Verify(b,  $|\phi\rangle^{\otimes n}$ , CR)



## Ours Construction:

Fix a hard unitary:

$$U^*: \mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^n}$$

Auxiliary input state:

$$|\phi\rangle := \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle_C (U^* |x\rangle)_R$$

**Com**(b,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$$|\psi_0\rangle_{CR} := |EPR_{\textcolor{red}{n}}\rangle_{C_1R_1} \cdots |EPR_{\textcolor{red}{n}}\rangle_{C_nR_n}$$

$$|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$$

Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .

**Verify**(b,  $|\phi\rangle^{\otimes n}$ , CR)  $\rightarrow \perp/\top$ :

b = 0: check CR ==  $|\psi_0\rangle$  by

$$\{|\psi_0\rangle\langle\psi_0|, I - |\psi_0\rangle\langle\psi_0|\}.$$

b = 1: check CR ==  $|\psi_1\rangle$  by swap-test.

## [Qia24, MNY24]

Fix a “hard” function:

$$H^*: \{0,1\}^n \rightarrow \{0,1\}^{3n}$$

Auxiliary input state:

$$|\phi\rangle := \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |H^*(x)\rangle_C |x\rangle_R$$

**Com**(b,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$$|\psi_0\rangle_{CR} := |EPR_{\textcolor{red}{3n}}\rangle_{C_1R_1} \cdots |EPR_{\textcolor{red}{3n}}\rangle_{C_nR_n}$$

$$|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$$

Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .

**Verify**(b,  $|\phi\rangle^{\otimes n}$ , CR)  $\rightarrow \perp/\top$ :

b = 0/1: Check CR ==  $|\psi_b\rangle$  by swap-test.

Can also use QPP to capture the unconditional computation hardness of [Qia24, MNY24].

## Source of Comp. Hardness in Ours Construction:

$$L_{\text{pure}^*}(\{U^*\}) := (L_Y, L_N) \quad U^* : \mathbb{C}^{2^n} \rightarrow \mathbb{C}^{2^n}$$

$$L_Y := \{U^1 \otimes U^2 | \text{HALF}\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$

$$L_N := \{(I \otimes U^*) | \text{EPR}\rangle\}$$

Thm: Exist  $\{U^*\}$  such that  $L_{\text{pure}^*}(\{U^*\}) \notin \text{pBQP/poly}$

Thm: For all  $\{U^*\}$ ,  $L_{\text{pure}^*}(\{U^*\}) \in \text{pALL}^{\text{poly}}$

## Source of Comp. Hardness in [Qia24, MNY24]:

$$L_{\text{mix}^*}(\{H^*\}) := (L_Y, L_N) \quad H^* : \{0,1\}^n \rightarrow \{0,1\}^{3n}$$

$$L_Y := \{\frac{1}{2^n} \sum_{x \in \{0,1\}^n} |H^*(x)\rangle \langle H^*(x)|\}$$

$$L_N := \{\frac{I}{2^{3n}}\}$$

Thm: Exist  $\{H^*\}$  such that  $L_{\text{mix}^*}(\{H^*\}) \notin \text{mBQP/qpoly}$

Thm: For all  $\{H^*\}$ ,  $L_{\text{pure}^*}(\{H^*\}) \in \text{mALL}^{\text{poly}}$

# Construction – Commit Algorithm

$|\phi\rangle := I \otimes U^\star |EPR\rangle$  Fix  $U^\star$  in  $L_{pure^\star}(\{U^\star\}) \notin pBQP/poly$

**Com**(b,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$|\psi_0\rangle_{CR} := |EPR\rangle_{C_1 R_1} \cdots |EPR\rangle_{C_n R_n}$

$|\psi_1\rangle_{CR} := |\phi\rangle_{C_1 R_1} \cdots |\phi\rangle_{C_n R_n}$

Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .

Satisfy perfect hiding

Committer

Prepare  $|\psi_b\rangle_{CR}$  &  
send register C

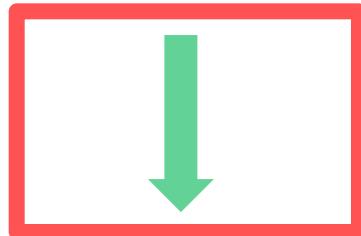
Register C



Receiver

# Proof of Computational Binding

$$L_{pure^*}(\{U_n^*\}) \notin pBQP/poly$$



Security of honest binding (0 to 1)

[Yan22]



Security of sum binding

# Adversary Break Honest Binding ( $0 \rightarrow 1$ )

$|\phi\rangle := I \otimes U^* |EPR\rangle$  Fix  $U^*$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

**Com**( $b$ ,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$|\psi_0\rangle_{CR} := |EPR\rangle_{C_1R_1} \cdots |EPR\rangle_{C_nR_n}$  Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .  
 $|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$

**Verify**( $b$ ,  $|\phi\rangle^{\otimes n}$ , CR)  $\rightarrow \perp/\top$ :

$b = 0$ : check CR ==  $|\psi_0\rangle$  by  $\{|\psi_0\rangle\langle\psi_0|, I - |\psi_0\rangle\langle\psi_0|\}$ .  
 $b = 1$ : check CR ==  $|\psi_1\rangle$  by swap-test.

**(Honest Commit):**

Adversary

Prepare  $|\psi_b\rangle_{CR}$  &  
send register C

Receiver

Register C



# Adversary Break Honest Binding ( $0 \rightarrow 1$ )

$|\phi\rangle := I \otimes U^* |EPR\rangle$  Fix  $U^*$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

**Com**( $b$ ,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$|\psi_0\rangle_{CR} := |EPR\rangle_{C_1R_1} \cdots |EPR\rangle_{C_nR_n}$  Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .  
 $|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$

**Verify**( $b$ ,  $|\phi\rangle^{\otimes n}$ , CR)  $\rightarrow \perp/\top$ :

$b = 0$ : check  $CR = |\psi_0\rangle$  by  $\{|\psi_0\rangle\langle\psi_0|, I - |\psi_0\rangle\langle\psi_0|\}$ .

$b = 1$ : check  $CR = |\psi_1\rangle$  by swap-test.

## (Reveal Phase):

Adversary

Register R



Receiver

$b = 1$ , Register R



The CR register  $\approx |\psi_1\rangle$

# Adversary Break Honest Binding ( $0 \rightarrow 1$ )

$|\phi\rangle := I \otimes U^* |EPR\rangle$  Fix  $U^*$  such that  $L_{pure^*}(\{U^*\}) \notin pBQP/poly$

**Com**( $b$ ,  $|\phi\rangle^{\otimes n}$ )  $\rightarrow |\psi_b\rangle_{CR}$ :

$|\psi_0\rangle_{CR} := |EPR\rangle_{C_1R_1} \cdots |EPR\rangle_{C_nR_n}$  Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ .  
 $|\psi_1\rangle_{CR} := |\phi\rangle_{C_1R_1} \cdots |\phi\rangle_{C_nR_n}$

**Verify**( $b$ ,  $|\phi\rangle^{\otimes n}$ , CR)  $\rightarrow \perp/\top$ :

$b = 0$ : check  $CR = |\psi_0\rangle$  by  $\{|\psi_0\rangle\langle\psi_0|, I - |\psi_0\rangle\langle\psi_0|\}$ .

$b = 1$ : check  $CR = |\psi_1\rangle$  by swap-test.


$$Adv \approx (U^*)^{\otimes n}$$

Use  $Adv$  to decide  $L_{pure^*}(\{U^*\})$ .

# Proof of Honest Binding



$$\approx (U^\star)^{\otimes n}$$

$$L_{pure^\star}(\{U^\star\}) := (L_Y, L_N)$$

$$L_Y := \{U^1 \otimes U^2 | \text{HALF}\rangle, \forall U^1, U^2 \in \mathbb{U}(n)\}$$

$$L_N := \{(I \otimes U^\star) | \text{EPR}\rangle\}$$

- Algorithm: input  $|\phi_{in}\rangle^{\otimes n}$

- Generate  $|\text{EPR}\rangle_{C_1 R_1} \cdots |\text{EPR}\rangle_{C_n R_n}$  (Let  $C := \{C_i\}_{i=1..n}$ ,  $R := \{R_i\}_{i=1..n}$ )
- Apply Adv to the R part get  $|\phi'\rangle$
- Apply n-swap test to  $|\phi'\rangle$  and  $|\phi_{in}\rangle^{\otimes n}$
- Output 0 if n-swap test pass.
- Otherwise output 1.

- Completeness:  $\geq 1 - negl(n)$  (because  $F(|\phi_{in}\rangle, |\text{EPR}\rangle) \leq \frac{3}{4}$ )
- Soundness:  $\leq 1 - 1/\text{poly}(n)$  (by the binding)

# Proof of Computational Binding

$$L_{pure^*}(\{U_n^*\}) \notin pBQP/poly$$



Security of honest binding (0 to 1)



Security of sum binding

# Proof of Computational Binding

- Thm [Yan22]: For canonical quantum bit commitment, honest binding imply sum-binding.
- Canonical Quantum Bit Commitment
  - Two efficient unitary  $\{Q_0, Q_1\}$ .
  - $\text{Com}(b): |\psi_b\rangle := Q_b|0\rangle$
  - $\text{Verify}(b, \text{CR}): \text{check} == |\psi_b\rangle \text{ by } \{|\psi_b\rangle\langle\psi_b|, I - |\psi_b\rangle\langle\psi_b|\}.$
- Our construct is “semi-”Canonical Quantum Bit Commitment
  - $\text{Com}(0): |\psi_0\rangle := |EPR\rangle^{\otimes n}$
  - $\text{Verify}(0, \text{CR}): \text{check} == |\psi_0\rangle \text{ by } \{|\psi_0\rangle\langle\psi_0|, I - |\psi_0\rangle\langle\psi_0|\}.$
- The technique of [Yan22] can be applied as well

# Discussion & Open Problems

- Natural and useful complexity theory to study
  - Different landscape – classical vs pure vs mixed
- Help understand computational hardness in quantum crypto
  - Further characterization? Worst-case hardness  $\Leftrightarrow$  EFI?
  - Impagliazzo's five worlds?
- Other applications
  - Interaction helps in quantum property testing
  - Hardness of quantum-input unitary synthesize problem

# Discussion & Open Problems

- Many open questions in QPP complexity theory
  - More unconditional separation or barrier?
    - Note: relativize barrier still hold
  - Complete problems for, e.g., PSPACE?
  - $p/mPSPACE^{poly}$  vs.  $p/mQIP^{poly}$ ?
  - $p/mQIP = p/mQIP[3]$ ?
  - $p/mQSZK_{hv} = p/mQSZK$ ?
  - ZK for  $p/mQMA$ ? [Mal'25]
  - Complexity of search  $p/mQMA$  witness – state synthesize complexity
  - Circuit complexity for QPP?