
Complexity Theory for
Quantum-Input Decision Problems &
Computational Hardness in Quantum Crypto
Kai-Min Chung (Academia Sinica)

https://arxiv.org/abs/2411.03716

Nai-Hui Chia
Rice University, Ken
Kennedy Institute and
Smalley-Curl Institute

Tzu-Hsiang Huang
UIUC

Jhih-Wei Shih
Academia Sinica

https://arxiv.org/abs/2411.03716

Complexity Theory

● Goal: how much computational resource to solve classical
input decision problem?

Input: classical input problem

Alg

1/0

output: 1 bit

Is a graph connected?

1 if graph is connected
0 otherwise

Does a local Hamiltonian
have ground state energy
lower than a or larger than b? 1 if the energy is lower than a

0 if the energy is larger than b

Complexity Theory

● Goal: how much computational resource to solve classical input
decision problem?

● Different type of computational resource: time, space, interaction
● Time:

○ P (deterministic polynomial time)
○ BPP (probabilistic polynomial time)
○ BQP (quantum polynomial time)

● Space:
○ PSPACE (deterministic polynomial space)
○ BQPSPACE (quantum polynomial space)

● Interaction:
○ NP (one classical message, deterministic polynomial time verifier)
○ QCMA (one classical message, quantum polynomial time verifier)
○ QMA (one quantum message, quantum polynomial time verifier)
○ IP (polynomial classical round, probabilistic polynomial time verifier)
○ QIP (polynomial quantum round, quantum polynomial time verifier)

Alg

Complexity Theory

𝑄𝐶𝑀𝐴

Complexity Theory for Non-decision Problem

There are many types of problems other than decision problems
● Promise problems
● Search problems
● Counting problems
● Sampling problems
● Streaming problems
● Property testing
● Distribution testing
● …..

Alg

string x
or

distribution D

0/1, string y,
#solutions,
distribution, etc.

Complexity Theory for Non-decision Problem

There are many types of problems other than decision problems
● Promise problems
● Search problems
● Counting problems
● Sampling problems
● Streaming problems
● Property testing
● Distribution testing
● …..

Various complexity classes and corresponding theory have
been studied for these types of problems

Corresponding complexity classes:

#P, FNP, PPAD, SampBQP, promiseNP, etc.

Alg

string x
or

distribution D

0/1, string y,
#solutions,
distribution…

What Happen in Quantum World?

Alg

string x
or

distribution D

0/1, string y,
#solutions,
distribution…

What Happen in Quantum World?

Alg

string x
or

distribution D
or

quantum
state/unitary

0/1, string y,
#solutions,
distribution,
quantum
state/unitary

More types of problems!

Different Type of Quantum Computational Problem

Input type Goal Complexity Theory

State synthesis
problem

classical synthesize quantum
state

[RY22]
[MY23]
[Ros24]

Unitary synthesis
problem

classical synthesize unitary
transform

[BEM+24]

Different Type of Quantum Computational Problem

Input type Goal Complexity Theory

State synthesis
problem

classical synthesize quantum
state

[RY22]
[MY23]
[Ros24]

Unitary synthesis
problem

classical synthesize unitary
transform

[BEM+24]

Pure quantum
promise problem

pure state decision [KA04] and this work

Mixed quantum
promise problem

mixed state decision [KA04] and this work

Different Type of Quantum Computational Problem

Input type Goal Complexity Theory

State synthesis
problem

classical synthesize quantum
state

[RY22]
[MY23]
[Ros24]

Unitary synthesis
problem

classical synthesize unitary
transform

[BEM+24]

Pure quantum
promise problem

pure state decision [KA04] and this work

Mixed quantum
promise problem

mixed state decision [KA04] and this work

Quantum-input unitary
synthesis problem

pure/mixed state synthesize unitary
transform

Why Quantum-Input Decision Problem? (Spoiler)

● Decision problems are easy to work with
○ naturally defined complexity classes
○ reduction, complete problems, oracle separation, barrier results

● Nature problems in quantum learning, property testing, crypto

● Useful to understand computational hardness in quantum crypto
○ Allow proving unconditional separation è

Explain hardness in unconditional quantum crypto

Security is only computational:
broken by unbounded adversary

Without making computational assumption

Why Quantum-Input Decision Problem? (Spoiler)

● Decision problems are easy to work with
○ naturally defined complexity classes
○ reduction, complete problems, oracle separation, barrier results

● Nature problems in quantum learning, property testing, crypto

● Useful to understand computational hardness in quantum crypto
○ Allow proving unconditional separation è

Explain hardness in unconditional quantum crypto

● Different landscape comparing to traditional complexity theory

Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

Input: multiple copies of a quantum state

Alg 1/0

output: 1 bit

Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

● Quantum promise problems:
○ L = (LY,LN): LY and LN are subsets of quantum states
○ Given copies of quantum state |s>, decide if |s> is in LY or LN

Input: multiple copies of a quantum state

Alg 1/0

output: 1 bit

Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

● Quantum promise problems:
○ L = (LY,LN): LY and LN are subsets of quantum states
○ Given copies of quantum state |s>, decide if |s> is in LY or LN

● Quantum input can be either pure or mixed

Input: multiple copies of a quantum state

Alg 1/0

output: 1 bit

Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

● Quantum promise problems:
○ L = (LY,LN): LY and LN are subsets of quantum states
○ Given copies of quantum state |s>, decide if |s> is in LY or LN

● Quantum input can be either pure or mixed
● Capture property testing, promise problems, distribution test
● Standard complexity theory cannot fully characterize QPPs

○ BQP, BPP, NP are for “classical inputs” not “quantum states”

Complexity Theory for QPPs

● Many interesting problems in quantum are in this form
○ Testing: product states, maximally mixed states, stablizer

states, matrix product state, etc.
○ Learning: small-depth states, shadow tomography, etc.

Complexity Theory for QPPs

● Many interesting problems in quantum are in this form
○ Testing: product states, maximally mixed states, stablizer

states, matrix product state, etc.
○ Learning: small-depth states, shadow tomography, etc.
○ Breaking security in quantum cryptography

Complexity Theory for QPPs

● Many interesting problems in quantum are in this form
○ Testing: product states, maximally mixed states, stablizer

states, matrix product state, etc.
○ Learning: small-depth states, shadow tomography, etc.
○ Breaking security in quantum cryptography

Our first motivation: Better characterize the security/hardness in
quantum crypto primitives

Quantum Primitives in Q Crypto

Source: Barak Nehoran (Crypto24 talk slides)

Security of Quantum Crypto Primitive

● Pseudorandom states (PRS): Generator generates quantum states
G|k> indistinguishable from Haar random states |R>

● One-way state generator (OWSG): Generator generates quantum
states G|x> hard to invert to classical inputs x

● EFI pairs: Generator generates two states ρ0 and ρ1 that are statistical
far but computational indistinguishable

Input: copies of |S> = G|k> or |R>

Alg
1/0

output: |S> = G|k> or |R>

Security of Quantum Crypto Primitive

● Pseudorandom states (PRS): Generator generates quantum states
G|0> indistinguishable from random states |R>

● One-way state generator (OWSG): Generator generates quantum
states G|x> hard to invert to classical inputs x

● EFI pairs: Generator generates two states ρ0 and ρ1 that are statistical
far but computational indistinguishable

Input: copies of |S> = G|x>

Alg
x

output: x

Security of Quantum Crypto Primitive

● Pseudorandom states (PRS): Generator generates quantum states
G|0> indistinguishable from random states |R>

● One-way state generator (OWSG): Generator generates quantum
states G|x> hard to invert to classical inputs x

● EFI pairs: Generator generates two states ρ0 and ρ1 that are statistical
far but computational indistinguishable

Input: copies of ρb for b=0 or 1

Alg

output: b

b

Complexity Classes for QPPs (pure version)

Let L=(LY,LN)

● pBQP: Given poly(n) copies of |s>, decide |s> in poly time
● pPSPACE: Given poly(n) copies of |s>, decide |s> in poly space
● pQIP: Verifier gets poly(n) copies of |s>, decides |s> with the help of a

malicious unbounded prover
● pQSZKhv: QIP, and the honest verifier cannot get info. other than |s> ∈ LY

Poly-time/
poly-space
algorithm

|s>....|s> |s> ∈ LY or LN

Complexity Classes for QPPs (pure version)

Let L=(LY,LN)

● pBQP: Given poly(n) copies of |s>, decide |s> in poly time
● pPSPACE: Given poly(n) copies of |s>, decide |s> in poly space
● pQIP: Verifier gets poly(n) copies of |s>, decides |s> with the help of a

malicious unbounded prover
● pQSZKhv: QIP, and the honest verifier cannot get info. other than |s> ∈ LY

Verifier Prover

Full description
of |s>

|s>....|s>

|s> ∈ LY or LN

Complexity Classes for QPPs (pure version)

Let L=(LY,LN)

● BQP: Given poly(n) copies of |s>, decide |s> in poly time
● PSPACE: Given poly(n) copies of |s>, decide |s> in poly space
● pQIP: Verifier gets poly(n) copies of |s>, decides |s> with the help of a

malicious unbounded prover
● pQSZKhv: QIP, and the honest verifier cannot get info. other than |s> ∈ LY

Verifier Prover

Full description
of |s>

|s>....|s>

|s> ∈ LY or LN

pQMA and pQCMA are pQIP(one-round) with quantum or
classical message from the prover

Complexity Classes for QPPs (mixed version)

Let L=(LY,LN)

● mBQP: Given poly(n) copies of 𝜌!, decide 𝜌! in poly time
● mPSPACE: Given poly(n) copies of 𝜌!, decide 𝜌! in poly space
● mQIP: Verifier gets poly(n) copies of 𝜌!, decides 𝜌! with the help of a

malicious unbounded prover
● mQMA: one round mQIP
● mQCMA: one round mQIP with classical message
● mQSZKhv: QIP & honest verifier cannot learn info. other than 𝜌! ∈ LY

of Copies Matter

● Our choice:
● Single Machine (BQP, PSPACE): polynomial copies
● Interactive Proofs (QIP, QSZKhv): prover unbounded copies

● Also reasonable to consider
● PSPACE: unbounded copies (require oracle access to the input

and able to discard qubits)
● QIP, QSZKhv : prover has polynomial copies
● lead to different complexity classes

Landscape of Pure QPP Complexity Class

𝑝𝐵𝑄𝑃

𝑝𝑄𝐶𝑀𝐴

𝑝𝑄𝑀𝐴

𝑝𝑃𝑆𝑃𝐴𝐶𝐸

𝑝𝑄𝑀𝐴 ⊆ 𝑝𝑃𝑆𝑃𝐴𝐶𝐸 is not trivial
because 𝑝𝑃𝑆𝑃𝐴𝐶𝐸 can only access
polynomial copies of input state

Landscape of Pure QPP Complexity Class

𝑝𝐵𝑄𝑃

𝑝𝑄𝐶𝑀𝐴

𝑝𝑄𝑀𝐴

𝑝𝑃𝑆𝑃𝐴𝐶𝐸

𝑳𝑳𝑯𝒘𝑷
𝒑𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑷
𝒑𝑸𝑶𝑹

Natural complete problem for
𝑝𝑄𝐶𝑀𝐴, 𝑝𝑄𝑀𝐴

𝑳𝑳𝑯𝒘𝑷

𝑳𝑯𝒘𝑷 variant of local-
Hamiltonian problem

𝒑𝑺𝑸𝑶𝑹

𝒑𝑸𝑶𝑹 Quantum OR lemma

Landscape of Mixed QPP Complexity Class

Landscape of Mixed QPP Complexity Class

Mixed version is non-trivial to define𝑳𝑳𝑯𝒘𝑴
m𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑴
m𝑸𝑶𝑹

Natural complete problem for
𝑚𝑄𝐶𝑀𝐴,𝑚𝑄𝑀𝐴

𝑳𝑳𝑯𝒘𝑴

𝑳𝑯𝒘𝑴 variant of local-
Hamiltonian problem

m𝑺𝑸𝑶

m𝑸𝑶𝑹 Quantum OR lemma

Landscape of Mixed QPP Complexity Class

𝑳𝑳𝑯𝒘𝑴
m𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑴
m𝑸𝑶𝑹

Landscape of Mixed QPP Complexity Class

⇒ 𝑚𝑄𝑆𝑍𝐾"# 2 ⊈ 𝑚𝑄𝑀𝐴

Unconditional separation between
non-interactive and interactive proof.

𝑳𝑳𝑯𝒘𝑴
m𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑴
m𝑸𝑶𝑹

Landscape of Pure QPP Complexity Class

𝑳𝑳𝑯𝒘𝑷
𝒑𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑷
𝒑𝑸𝑶𝑹

𝑝𝑄𝑆𝑍𝐾"# 2 ⊈ 𝑝𝑄𝑀𝐴

Landscape of Pure QPP Complexity Class

𝑳𝑳𝑯𝒘𝑷
𝒑𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑷
𝒑𝑸𝑶𝑹

Landscape of Mixed QPP Complexity Class

The behavior between pure and
mixed QPP can be different.

𝑳𝑳𝑯𝒘𝑴
m𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑴
m𝑸𝑶𝑹

Landscape of Pure QPP Complexity Class

𝑳𝑳𝑯𝒘𝑷
𝒑𝑺𝑸𝑶𝑹

𝑳𝑯𝒘𝑷
𝒑𝑸𝑶𝑹

Characterize Hardness of Quantum Crypto Primitive

2. QPP complexity
provide new hardness
resource for microcrypt

and unconditionally
secure primitive

1. Microcrypt primitives
imply natural separation of
QPP complexity classes

Source: Barak Nehoran (Crypto24 talk slides)

Our results: Applications to Crypto

Microcrypt:

Unconditional quantum crypto:

PRS, pOWSG

Statistical binding, computational hiding commitment (quantum auxiliary model)

mOWSG

Quantum auxiliary-input EFI

EFI

Our results: Applications to Crypto

Microcrypt:
PRS, pOWSG

Statistical binding, computational hiding commitment (auxiliary-input model)

mOWSG

Quantum auxiliary-input EFI

Unconditional quantum crypto:

EFI

By search to decision for
for 𝑝𝑄𝐶𝑀𝐴 and 𝑚𝑄𝐶𝑀𝐴.

Our results: Applications to Crypto

Microcrypt:

prover has poly copies input

PRS, pOWSG

Statistical binding, computational hiding commitment (auxiliary-input model)

mOWSG

Quantum auxiliary-input EFI

Unconditional quantum crypto:

EFI
𝑚𝐵𝑄𝑃 ≠ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

Our results: Applications to Crypto

Microcrypt:

⟹ relativization barrier for EFI!

PRS, pOWSG

Statistical binding, computational hiding commitment (auxiliary-input model)

mOWSG

Quantum auxiliary-input EFI

Unconditional quantum crypto:

EFI
𝑚𝐵𝑄𝑃 ≠ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

Our results: Applications to Crypto

Microcrypt:
PRS, pOWSG

Statistical binding, computational hiding commitment (auxiliary-input model)

mOWSG

Quantum auxiliary-input EFI

Unconditional quantum crypto:

avgpQCZKhv is hard EFI
𝑚𝐵𝑄𝑃 ≠ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

Our results: Applications to Crypto

Microcrypt:

EFIavgpQCZKhv is hard

Computational binding, perfect hiding commitment (auxiliary-input model)

PRS, pOWSG

Statistical binding, computational hiding commitment (auxiliary-input model)

mOWSG

Quantum auxiliary-input EFI

Unconditional quantum crypto:
𝑚𝐵𝑄𝑃 ≠ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Auxiliary-input model: (setup phase)

Committer Receiver

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Auxiliary-input model: (commit phase)

Committer ReceiverRegister C

On input (b, 𝜙 ⊗"#$%(')),
prepare 𝜓) *+ and send
register C to receiver.

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Auxiliary-input model: (reveal phase)

Committer Receiver

Bit b, Register R
Send bit b and register R
to the receiver.

Run Verify on register
CR, b and 𝜙 ⊗%, then
return the output.

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
○ Secure against QPT adversary with quantum advice

Unconditional Computational Hiding:

• C part of 𝜓, *+ and 𝜓- *+ are only computational indistinguishable

• Without using any computational assumption

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
○ Secure against QPT adversary with quantum advice

● Open question: Auxiliary-input unconditional-secure statistically
hiding computational binding commitment scheme?

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
○ Secure against QPT adversary with quantum advice

● Open question: Auxiliary-input unconditional-secure statistically
hiding computational binding commitment scheme?

Our results:
● Auxiliary-input unconditional-secure perfect hiding computational

binding commitment
○ Secure against QPT adversary with classical advice

Unconditional Secure Commitment Scheme

● [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
○ Secure against QPT adversary with quantum advice

● Open question: Auxiliary-input unconditional-secure statistically
hiding computational binding commitment scheme?

Our results:
● Auxiliary-input unconditional-secure perfect hiding computational

binding commitment
○ Secure against QPT adversary with classical advice

● Lead to unconditional pBQP/qpoly ≠ pBQP/poly

Unconditional Separation and
Unconditional Cryptography

Unconditional Separation and
Unconditional Cryptography

Three Separation Results:

● 𝑇ℎ𝑚: 𝑚𝑄𝑆𝑍𝐾./ 2 ⊈ 𝑚𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: 𝑚𝑄𝐼𝑃 ⊈ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: 𝑝𝑄𝑆𝑍𝐾./[2] ⊈ 𝑝𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: 𝑝𝑄𝐼𝑃 ⊈ 𝑝𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

sample complexity
type of separation
𝑝/𝑚𝐶& ⊈ 𝑝/𝑚𝐴𝐿𝐿'()*

computational type of
separation
𝑝/𝑚𝐶& ⊆ 𝑝/𝑚𝐴𝐿𝐿'()*

unconditional cryptography

Three Separation Results:

● 𝑇ℎ𝑚: 𝑚𝑄𝑆𝑍𝐾./ 2 ⊈ 𝑚𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: 𝑚𝑄𝐼𝑃 ⊈ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: p𝑄𝑆𝑍𝐾./[2] ⊈ 𝑝𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: p𝑄𝐼𝑃 ⊈ 𝑝𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

Quantum Promise Problem 𝐿678

𝑳𝒎𝒊𝒙 ≔ (𝑳𝒀, 𝑳𝑵)

𝐿5 ≔ {𝑈𝜌.6$7𝑈8, ∀ 𝑈 ∈ 𝕌(n)}

𝐿9 = {
𝐼
2'}

𝜌.6$7 ≔
1

2':- N
;∈ ,,- !"#

|𝑖⟩⟨𝑖|

𝕌(n) be the set of n-qubit unitary

Thm: 𝐿/01 ∉ 𝑚𝐴𝐿𝐿2345

Thm: 𝐿/01 ∈ 𝑚𝑄𝑆𝑍𝐾67[2]

Cor: 𝑚𝑄𝐼𝑃 ⊈ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

𝑚𝑄𝑆𝑍𝐾67[2] ⊈ 𝑚𝐴𝐿𝐿2345

Theorem: 𝐿678 ∉ 𝑚𝐴𝐿𝐿9:;<

● Thm [CHW07] : For any polynomial q(⋅) and all sufficiently large n, for
all algorithm C, the following hold:

| Pr 𝐶
𝐼
2%

⊗+(%)
= 1 − Pr

.←0112+
𝐶 𝑈𝜌"1)3𝑈4

⊗+(%) = 1 | ≤
𝑞 𝑛
2%

𝜌!"#$ ≔
1

2%&' 9
(∈ *,' !"#

|𝑖⟩⟨𝑖|

NO Instance Random Yes Instance

Theorem: 𝐿678 ∈ 𝑚𝑄𝑆𝑍𝐾LM[2]

Prover Verifier

𝑏 ← {0,1}(8
9>

⊗;
, 𝜌0;

⊗;) vs (𝜌7N
⊗N , P

Q!
⊗N

)

b = 0 b = 1

b’

Accept if b’= b

Graph non-Isomorphism Like Protocol:

𝐿,(- ≔ (𝐿., 𝐿/)

𝐿. ≔ {𝑈𝜌!"#$𝑈0, ∀ 𝑈 ∈ 𝕌(n)}

𝐿/ = {
𝐼
2%
}

Completeness

Prover Verifier

𝑏 ← {0,1}(8
9>

⊗;
, 𝜌0;

⊗;) vs (𝜌7N
⊗N , P

Q!
⊗N

)

b = 0 b = 1

b’

Accept if b’= b

Graph non-Isomorphism Like Protocol:

𝐿,(- ≔ (𝐿., 𝐿/)

𝐿. ≔ {𝑈𝜌!"#$𝑈0, ∀ 𝑈 ∈ 𝕌(n)}

𝐿/ = {
𝐼
2%
}

Completeness: 1 – negl(n):

Trace distance between 8
9>

⊗;
and 𝜌0;

⊗; is 1 – negl(n).

Soundness

Prover Verifier

𝑏 ← {0,1}(8
9>

⊗;
, 𝜌0;

⊗;) vs (𝜌7N
⊗N , P

Q!
⊗N

)

b = 0 b = 1

b’

Accept if b’= b

Graph non-Isomorphism Like Protocol:

𝐿,(- ≔ (𝐿., 𝐿/)

𝐿. ≔ {𝑈𝜌!"#$𝑈0, ∀ 𝑈 ∈ 𝕌(n)}

𝐿/ = {
𝐼
2%
}

Soundness: <
9

Because 𝜌0; =
8
9>
, the case b = 0 or 1 are identical.

Statistical HV Zero Knowledge

Prover Verifier

𝑏 ← {0,1}(8
9>

⊗;
, 𝜌0;

⊗;) vs (𝜌7N
⊗N , P

Q!
⊗N

)

b = 0 b = 1

b’

Accept if b’= b

Graph Non-Isomorphism Like Protocol:

𝐿,(- ≔ (𝐿., 𝐿/)

𝐿. ≔ {𝑈𝜌!"#$𝑈0, ∀ 𝑈 ∈ 𝕌(n)}

𝐿/ = {
𝐼
2%
}

Statistical HV zero knowledge:
Similar to Graph Non-Isomorphism Protocol.

Three Separation Results:

● 𝑇ℎ𝑚: 𝑚𝑄𝑆𝑍𝐾 2 ⊈ 𝑚𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: 𝑚𝑄𝐼𝑃 ⊈ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: 𝑝𝑄𝑆𝑍𝐾[2] ⊈ 𝑝𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: 𝑝𝑄𝐼𝑃 ⊈ 𝑝𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

Quantum Promise Problem 𝐿2=>?
𝑳𝒎𝒊𝒙 ≔ (𝑳𝒀, 𝑳𝑵)

𝐿5 ≔ {𝑈𝜌.6$7𝑈8, ∀ 𝑈 ∈ 𝕌(n)}

𝐿9 = {
𝐼
2'}

𝜌$%&' ≔
1

2()* D
+∈ -,* 123

|𝑖⟩⟨𝑖|

|𝐸𝑃𝑅⟩ ≔
1
2,

F
-∈ /,1 !

𝑖 |𝑖⟩
𝑳𝒑𝒖𝒓𝒆 ≔ (𝑳𝒀, 𝑳𝑵)

|𝐻𝐴𝐿𝐹⟩ ≔
1
2,21

F
-∈ /,1 !"#

0𝑖 |0𝑖⟩𝐿9 ≔ 𝐼 ⊗𝑈 𝐸𝑃𝑅 , ∀ 𝑈 ∈ 𝕌(n)}
𝐿5 ≔ 𝑈-⊗𝑈Q 𝐻𝐴𝐿𝐹 , ∀ 𝑈-, 𝑈Q ∈ 𝕌(n)}

purify

Thm: 𝐿2=>? ∉ 𝑝𝐴𝐿𝐿2345

Thm: 𝐿2=>? ∈ 𝑝𝑄𝑆𝑍𝐾67[2]

Cor: 𝑝𝑄𝐼𝑃 ⊈ 𝑝𝑃𝑆𝑃𝐴𝐶𝐸

𝑝𝑄𝑆𝑍𝐾67[2] ⊈ 𝑝𝐴𝐿𝐿2345

Theorem: 𝐿9RST ∉ 𝑝𝐴𝐿𝐿9:;<

● Theorem [CWZ24] (informal) : Let 𝐿 = (𝐿/ , 𝐿0) be a mixed QPP.
Let 𝐿′ be the purified version of 𝐿. Then sample complexity for deciding 𝐿 and
𝐿’ are the same.

𝑳𝒎𝒊𝒙 ≔ (𝑳𝒀, 𝑳𝑵)
𝐿/ ≔ {𝑈𝜌$%&'𝑈6, ∀ 𝑈 ∈ 𝕌(n)}

𝐿0 = {
𝐼
2(
} purify

𝑳𝒑𝒖𝒓𝒆 ≔ (𝑳𝒀, 𝑳𝑵)

𝐿0 ≔ 𝐼 ⊗𝑈 𝐸𝑃𝑅 , ∀ 𝑈 ∈ 𝕌(n)}
𝐿/ ≔ 𝑈*⊗𝑈; 𝐻𝐴𝐿𝐹 , ∀ 𝑈*, 𝑈; ∈ 𝕌(n)}

Theorem: 𝐿9RST ∈ 𝑝𝑄𝑆𝑍𝐾LM[2]

Prover Verifier

𝑏 ← {0,1}
(8
9>

⊗;
, 𝜌0;

⊗;) vs (𝜌7N
⊗N , P

Q!
⊗N

)

b = 0 b = 1

b’

Accept if b’= b

The same Graph Non-Isomorphism Like Protocol
except that we set 𝜌J% = first half of |𝜙J%⟩.

𝐿$%&' ≔ (𝐿(, 𝐿))

𝐿) ≔ 𝐼 ⊗𝑈 𝐸𝑃𝑅 , ∀ 𝑈 ∈ 𝕌(n)}

𝐿(≔ 𝑈*⊗𝑈+ 𝐻𝐴𝐿𝐹 , ∀ 𝑈*, 𝑈+ ∈ 𝕌(n)}

Three Separation Results:

● 𝑇ℎ𝑚: 𝑚𝑄𝑆𝑍𝐾 2 ⊈ 𝑚𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: 𝑚𝑄𝐼𝑃 ⊈ 𝑚𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: p𝑄𝑆𝑍𝐾[2] ⊈ 𝑝𝐴𝐿𝐿"#$%

○ 𝐶𝑜𝑟: p𝑄𝐼𝑃 ⊈ 𝑝𝑃𝑆𝑃𝐴𝐶𝐸

● 𝑇ℎ𝑚: 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

Quantum Promise Problem 𝑳𝒑𝒖𝒓𝒆⋆({𝑼⋆})

|𝐸𝑃𝑅⟩ ≔
1
2,

F
-∈ /,1 !

𝑖 |𝑖⟩
𝑳𝒑𝒖𝒓𝒆 ≔ (𝑳𝒀, 𝑳𝑵)

|𝐻𝐴𝐿𝐹⟩ ≔
1
2,21

F
-∈ /,1 !"#

0𝑖 |0𝑖⟩𝐿9 ≔ 𝐼 ⊗𝑈 𝐸𝑃𝑅 , ∀ 𝑈 ∈ 𝕌(n)}
𝐿5 ≔ 𝑈-⊗𝑈Q 𝐻𝐴𝐿𝐹 , ∀ 𝑈-, 𝑈Q ∈ 𝕌(n)}

Fix a hard 𝑼⋆

𝑳𝒑𝒖𝒓𝒆⋆({𝑼⋆}) ≔ (𝑳𝒀, 𝑳𝑵)

𝐿9 ≔ 𝐼 ⊗𝑈⋆ 𝐸𝑃𝑅 }
𝐿5 ≔ 𝑈-⊗𝑈Q 𝐻𝐴𝐿𝐹 , ∀ 𝑈-, 𝑈Q ∈ 𝕌(n)}

Thm: Exist {𝑈⋆} such that 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Thm: For all {𝑈⋆}, 𝐿'L2M⋆({𝑈⋆}) ∈ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

Cor: 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

Thm: For all {𝑈⋆}, 𝐿"STU⋆({𝑈⋆}) ∈ 𝑝𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦
𝑳𝒑𝒖𝒓𝒆⋆ ≔ (𝑳𝒀, 𝑳𝑵)

𝐿) ≔ 𝐼 ⊗𝑈⋆ 𝐸𝑃𝑅 }
𝐿(≔ 𝑈*⊗𝑈+ 𝐻𝐴𝐿𝐹 , ∀ 𝑈*, 𝑈+ ∈ 𝕌(n)}

● Quantum advice: 𝜙⋆ ≔ (I⊗ 𝑈⋆)|𝐸𝑃𝑅⟩

● Algorithm: input 𝜙0; , advice 𝜙⋆
○ Apply swap test to 𝜙J% and 𝜙⋆

○ Output 1 if swap test fail
○ Otherwise output 0.

● Completeness: ≥ <
X (because 𝐹 𝜙0; , 𝜙⋆ ≤ Y

Z)

● Soundness: = 0

Use Swap Test

Thm: Exist {𝑈⋆} such that 𝐿"STU⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

● [CWZ24] & [CHW07] => average case hardness of 𝐿=>?@

● For any polynomial q(⋅) and all sufficiently large n, for all algorithm C, the
following hold:

| Pr
4←6778!

𝐶 𝐼 ⊗ 𝑈|𝐸𝑃𝑅⟩)⊗:(,) = 1 − Pr
4#,43←6778!

𝐶 𝑈1⊗𝑈=|𝐻𝐴𝐿𝐹⟩)⊗: , = 1 | ≤
𝑞(𝑛)
2,

𝑳𝒑𝒖𝒓𝒆 ≔ (𝑳𝒀, 𝑳𝑵)

𝐿) ≔ 𝐼 ⊗𝑈 𝐸𝑃𝑅 , ∀ 𝑈 ∈ 𝕌(n)}
𝐿(≔ 𝑈*⊗𝑈+ 𝐻𝐴𝐿𝐹 , ∀ 𝑈*, 𝑈+ ∈ 𝕌(n)}

Uniformly Random
No Instance Uniformly Random

Yes Instance

Thm: Exist {𝑈⋆} such that 𝐿"STU⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

● By Haar random concentration argument in [Kre21] :

● For any polynomial q(⋅) and all sufficiently large n, for all algorithm C, with

probability 1 – exp(−2
1
4) over U ← 𝐻𝑎𝑎𝑟(such that:

| 𝑃𝑟 𝐶 𝐼 ⊗ 𝑈 |𝐸𝑃𝑅⟩)⊗B (= 1

− Pr
C3,C5←E%%?1

𝐶 𝑈*⊗𝑈;|𝐻𝐴𝐿𝐹⟩)⊗B (= 1 | ≤
𝑞 𝑛
2(+ 2)

(
F

Thm: Exist {𝑈⋆} such that 𝐿"STU⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

● Switch quantifier by a union bound:

● For any polynomial q(⋅) and all sufficiently large n, there exist 𝑈⋆ such that for all
polynomial size circuits C

| 𝑃𝑟 𝐶 𝐼 ⊗ 𝑈⋆ |𝐸𝑃𝑅⟩)⊗B (= 1

− Pr
C3,C5←E%%?1

𝐶 𝑈*⊗𝑈;|𝐻𝐴𝐿𝐹⟩)⊗B (= 1 | ≤
𝑞 𝑛
2(

+ 2)
(
F

Unconditional Separation and
Unconditional Cryptography

Thm: There exist a commitment scheme satisfy
computational sum-binding* and perfect hiding
in auxiliary-input model.

*secure against non-uniform adv with classical advice

Construction – Auxiliary Input State
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ in 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Committer Receiver

Construction – Commit Algorithm
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ in 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Register CRegister CPrepare 𝜓) *+ &
send register C

Committer Receiver

Com(b, 𝜙 ⊗()→ 𝜓G HI:
𝜓- HI ≔ 𝐸𝑃𝑅 H3I3⋯ 𝐸𝑃𝑅 H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Construction – Verify Algorithm
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ in 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Committer Receiver

Verify(b, 𝜙 ⊗(, CR) →⊥/⊤:
b = 0: check CR == 𝜓- by { 𝜓- ⟨𝜓-|, 𝐼 − 𝜓- ⟨𝜓-|}.
b = 1: check CR == 𝜓* by swap-test.

Bit b, Register RSend b & register R Run Verify(b, 𝜙 ⊗', CR)

Com(b, 𝜙 ⊗()→ 𝜓G HI:
𝜓- HI ≔ 𝐸𝑃𝑅 H3I3⋯ 𝐸𝑃𝑅 H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Com(b, 𝜙 ⊗() → 𝜓G HI :
𝜓- HI ≔ 𝐸𝑃𝑅(H3I3⋯ 𝐸𝑃𝑅(H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Ours Construction:
Fix a hard unitary:
𝑈⋆: ℂ;1 → ℂ;1

Auxiliary input state:

𝜙 ≔
1
2(

D
L∈ -,* 1

𝑥 H(𝑈⋆ 𝑥)I

Verify(b, 𝜙 ⊗(, CR) →⊥/⊤:
b = 0: check CR == 𝜓- by
{ 𝜓- ⟨𝜓-|, 𝐼 − 𝜓- ⟨𝜓-|}.

b = 1: check CR == 𝜓* by swap-
test.

[Qia24, MNY24]
Fix a “hard” function:
𝐻⋆: 0,1 (→ 0,1 F(

Auxiliary input state:

𝜙 ≔
1
2(

D
L∈ -,* 1

𝐻⋆ 𝑥 H 𝑥 I

Com(b, 𝜙 ⊗() → 𝜓G HI :
𝜓- HI ≔ 𝐸𝑃𝑅F(H3I3⋯ 𝐸𝑃𝑅F(H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Verify(b, 𝜙 ⊗(, CR) →⊥/⊤ :
b =0/1: Check CR == 𝜓G by swap-
test.

Can also use QPP to capture the
unconditional computation hardness of

[Qia24,MNY24].

Source of Comp. Hardness in Ours Construction:
𝑳𝒑𝒖𝒓𝒆⋆({𝑼⋆}) ≔ (𝑳𝒀, 𝑳𝑵)

𝐿9 ≔ 𝐼 ⊗𝑈⋆ 𝐸𝑃𝑅 }
𝐿5 ≔ 𝑈-⊗𝑈Q 𝐻𝐴𝐿𝐹 , ∀ 𝑈-, 𝑈Q ∈ 𝕌(n)}

Thm: Exist {𝑈⋆} such that 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Thm: For all {𝑈⋆}, 𝐿'L2M⋆({𝑈⋆}) ∈ 𝑝𝐴𝐿𝐿'()*

𝑈⋆: ℂQ! → ℂQ!

Source of Comp. Hardness in [Qia24, MNY24]:
𝑳𝒎𝒊𝒙⋆({𝑯⋆}) ≔ (𝑳𝒀, 𝑳𝑵)

𝐿0 ≔ {
𝐼
2F(}

𝐿/ ≔ {
1
2(D

L∈ -,* 1

|𝐻⋆ 𝑥 ⟩⟨𝐻⋆(𝑥)|}

𝐻⋆: 0,1 ' → 0,1 `'

Thm: Exist {𝐻⋆} such that 𝐿NJO⋆ 𝐻⋆ ∉ 𝑚𝐵𝑄𝑃/𝑞𝑝𝑜𝑙𝑦

Thm: For all {𝐻⋆}, 𝐿'L2M⋆({𝐻⋆}) ∈ 𝑚𝐴𝐿𝐿'()*

Construction – Commit Algorithm
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ in 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Register CRegister CPrepare 𝜓) *+ &
send register C

Committer Receiver

Com(b, 𝜙 ⊗()→ 𝜓G HI:
𝜓- HI ≔ 𝐸𝑃𝑅 H3I3⋯ 𝐸𝑃𝑅 H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Satisfy perfect hiding

Proof of Computational Binding

𝐿"STU⋆({𝑈'⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Security of honest binding (0 to 1)

Security of sum binding

[Yan22]

Adversary Break Honest Binding (0 → 1)
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ such that 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Adversary Receiver
Register C

(Honest Commit):

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Com(b, 𝜙 ⊗()→ 𝜓G HI:
𝜓- HI ≔ 𝐸𝑃𝑅 H3I3⋯ 𝐸𝑃𝑅 H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Verify(b, 𝜙 ⊗(, CR) →⊥/⊤:
b = 0: check CR == 𝜓- by { 𝜓- ⟨𝜓-|, 𝐼 − 𝜓- ⟨𝜓-|}.
b = 1: check CR == 𝜓* by swap-test.

Prepare 𝜓) *+ &
send register C

Adversary Break Honest Binding (0 → 1)
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ such that 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Register R
𝐴𝑑𝑣

b = 1, Register R
The CR register ≈ 𝜓-

Adversary Receiver

(Reveal Phase):

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Com(b, 𝜙 ⊗()→ 𝜓G HI:
𝜓- HI ≔ 𝐸𝑃𝑅 H3I3⋯ 𝐸𝑃𝑅 H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Verify(b, 𝜙 ⊗(, CR) →⊥/⊤:
b = 0: check CR == 𝜓- by { 𝜓- ⟨𝜓-|, 𝐼 − 𝜓- ⟨𝜓-|}.
b = 1: check CR == 𝜓* by swap-test.

Adversary Break Honest Binding (0 → 1)
𝜙 ≔ 𝐼 ⊗𝑈⋆|𝐸𝑃𝑅⟩ Fix 𝑈⋆ such that 𝐿'L2M⋆({𝑈⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

𝐴𝑑𝑣 ≈ (𝑈⋆)⊗#

Use 𝐴𝑑𝑣 to decide 𝐿"STU⋆({𝑈⋆}).

Let 𝐶 ≔ 𝐶+ +J*..(, 𝑅 ≔ 𝑅+ +J*..(.

Com(b, 𝜙 ⊗()→ 𝜓G HI:
𝜓- HI ≔ 𝐸𝑃𝑅 H3I3⋯ 𝐸𝑃𝑅 H1I1
𝜓* HI ≔ 𝜙 H3I3⋯ 𝜙 H1I1

Verify(b, 𝜙 ⊗(, CR) →⊥/⊤:
b = 0: check CR == 𝜓- by { 𝜓- ⟨𝜓-|, 𝐼 − 𝜓- ⟨𝜓-|}.
b = 1: check CR == 𝜓* by swap-test.

Proof of Honest Binding

𝑳𝒑𝒖𝒓𝒆⋆({𝑼⋆}) ≔ (𝑳𝒀, 𝑳𝑵)

𝐿9 ≔ 𝐼 ⊗𝑈⋆ 𝐸𝑃𝑅 }
𝐿5 ≔ 𝑈-⊗𝑈Q 𝐻𝐴𝐿𝐹 , ∀ 𝑈-, 𝑈Q ∈ 𝕌(n)}

● Algorithm: input 𝜙0; ⊗;

○ Generate 𝐸𝑃𝑅 P>Q>⋯ 𝐸𝑃𝑅 P+Q+ (Let 𝐶 ≔ 𝐶J JR&..%, 𝑅 ≔ 𝑅J JR&..%)
○ Apply Adv to the R part get |𝜙T⟩
○ Apply n-swap test to |𝜙T⟩ and 𝜙J% ⊗%

○ Output 0 if n-swap test pass.
○ Otherwise output 1.

● Completeness: ≥ 1 − 𝑛𝑒𝑔𝑙(𝑛) (because 𝐹 𝜙0; , 𝐸𝑃𝑅 ≤ Y
Z)

● Soundness: ≤ 1 − 1/𝑝𝑜𝑙𝑦(𝑛) (by the binding)

𝐴𝑑𝑣 ≈ (𝑈⋆)⊗#

Proof of Computational Binding

𝐿"STU⋆({𝑈'⋆}) ∉ 𝑝𝐵𝑄𝑃/𝑝𝑜𝑙𝑦

Security of honest binding (0 to 1)

Security of sum binding

[Yan22]

Proof of Computational Binding

● Thm [Yan22]: For canonical quantum bit commitment, honest
binding imply sum-binding.

● Canonical Quantum Bit Commitment
○ Two efficient unitary {𝑄U, 𝑄&}.
○ Com(b): 𝜓V ≔ 𝑄V 0
○ Verify(b,CR): check == |𝜓V⟩ by { 𝜓V ⟨𝜓V|, 𝐼 − 𝜓V ⟨𝜓V|}.

● Our construct is “semi-”Canonical Quantum Bit Commitment
○ Com(0): |𝜓U⟩ ≔ 𝐸𝑃𝑅 ⊗%

○ Verify(0,CR): check == |𝜓U⟩ by { 𝜓U ⟨𝜓U|, 𝐼 − 𝜓U ⟨𝜓U|}.

● The technique of [Yan22] can be applied as well

Discussion & Open Problems

● Natural and useful complexity theory to study
○ Different landscape – classical vs pure vs mixed

● Help understand computational hardness in quantum crypto
○ Further characterization? Worst-case hardness <=> EFI?
○ Impagliazzo’s five worlds?

● Other applications
○ Interaction helps in quantum property testing
○ Hardness of quantum-input unitary synthesize problem

Discussion & Open Problems

● Many open questions in QPP complexity theory
○ More unconditional separation or barrier?

■ Note: relativize barrier still hold
○ Complete problems for, e.g., PSPACE?
○ 𝑝/𝑚𝑃𝑆𝑃𝐴𝐶𝐸=M&N vs. 𝑝/𝑚𝑄𝐼𝑃=M&N?
○ 𝑝/𝑚𝑄𝐼𝑃 = 𝑝/𝑚𝑄𝐼𝑃[3]?
○ 𝑝/𝑚𝑄𝑆𝑍𝐾$O = 𝑝/𝑚𝑄𝑆𝑍𝐾?
○ ZK for 𝑝/𝑚𝑄𝑀𝐴? [Mal’25]
○ Complexity of search 𝑝/𝑚𝑄𝑀𝐴 witness – state synthesize complexity
○ Circuit complexity for QPP?

