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Complexity Theory

e Goal: how much computational resource to solve classical
input decision problem”?

Input: classical input problem output: 1 bit
Is a graph connected? 1/0
J’\\ f 1 if graph is connected
/ />—<> 0 otherwise
> < -y >
Does a local Hamiltonian
have ground state energy

lower than a or larger than b? 1 if the energy is lower than a
0 if the energy is larger than b




Complexity Theory

® Goal: how much computational resource to solve classical input
decision problem?

e Different type of computational resource: time, space, interaction

e [ime;

o P (deterministic polynomial time)
o BPP (probabilistic polynomial time)

o BQP (quantum polynomial time)
» Alg
® Space:

o PSPACE (deterministic polynomial space)
o BQPSPACE (quantum polynomial space)

e Interaction:

NP (one classical message, deterministic polynomial time verifier)
QCMA (one classical message, quantum polynomial time verifier)
QMA (one quantum message, quantum polynomial time verifier)

IP (polynomial classical round, probabilistic polynomial time verifier)
QIP (polynomial quantum round, quantum polynomial time verifier)

=

o O O O

(@)



Complexity Theory

QIP = IP = PSPACE = QPSPACE

QMA

QCMA




Complexity Theory for Non-decision Problem

There are many types of problems other than decision problems

Promise problems
Search problems
Counting problems
Sampling problems
Streaming problems
Property testing
Distribution testing

ooooo

strmg X 0/1, string y,
» » #solutions,
d|str|but|on D distribution, etc.




Complexity Theory for Non-decision Problem

There are many types of problems other than decision problems

Promise problems
Search problems
Counting problems
Sampling problems
Streaming problems
Property testing
Distribution testing

ooooo

>

Corresponding complexity classes:

#P, FNP, PPAD, SampBQP, promiseNP, etc.

Various complexity classes and corresponding theory have
been studied for these types of problems



strmg X 0/1, string y,
» #solutions,
dlstrlbutlon D distribution...




strmg X 0/1, string vy,
» #solutions,
d|str|but|on D distribution...

What Happen in Quantum World?



strmg X 0/1, string y,
» #solutions,
dlstrlbutlon D » distribution,
quantum
quantum state/unitary

state/unitary

What Happen in Quantum World?

More types of problems!




Different Type of Quantum Computational Problem

- " - L

State synthesis classical synthesize quantum [RY22]
problem state [MY23]
[Ros24]

Unitary synthesis classical synthesize unitary [BEM+24]

problem transform



Different Type of Quantum Computational Problem

Input type

Complexity Theory

State synthesis
problem

Unitary synthesis
problem

Pure quantum
promise problem

Mixed quantum
promise problem

classical

classical

pure state

mixed state

synthesize quantum
state

synthesize unitary
transform

decision

decision

[RY22]
[MY23]
[Ros24]

[BEM+24]

[KAO4] and this work

[KAO4] and this work



Different Type of Quantum Computational Problem

Input type Complexity Theory

State synthesis classical synthesize quantum [RY22]
problem state [MY23]
[Ros24]
Unitary synthesis classical synthesize unitary [BEM+24]
problem transform
Pure quantum pure state decision [KAO4] and this work

promise problem

Mixed quantum mixed state decision [KAO04] and this work
promise problem

Quantum-input unitary pure/mixed state synthesize unitary
synthesis problem transform



Why Quantum-Input Decision Problem? (Spoiler)

@ Decision problems are easy to work with
o naturally defined complexity classes
o reduction, complete problems, oracle separation, barrier results

e Nature problems in quantum learning, property testing, crypto

e Useful to understand computational hardness in quantum crypto
o Allow proving unconditional separation =»
Explain hardness in unconditional quantum crypto

Security is only computational:
broken by unbounded adversary
Without making computational assumption




Why Quantum-Input Decision Problem? (Spoiler)

@ Decision problems are easy to work with
o naturally defined complexity classes
o reduction, complete problems, oracle separation, barrier results

e Nature problems in quantum learning, property testing, crypto

e Useful to understand computational hardness in quantum crypto
[ o Allow proving unconditional separation =» ]

Explain hardness in unconditional quantum crypto

e Different landscape comparing to traditional complexity theory




Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

Input: multiple copies of a quantum state output: 1 bit



Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

® Quantum promise problems:
o L=(Ly,Ly): Ly and Ly are subsets of quantum states
o Given copies of quantum state Is>, decide if Is>isin Ly or Ly

Input: multiple copies of a quantum state output: 1 bit

., -



Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

® Quantum promise problems:

o L=(Ly,Ly): Ly and Ly are subsets of quantum states

o Given copies of quantum state Is>, decide if Is>isin Ly or Ly
® Quantum input can be either pure or mixed

Input: multiple copies of a quantum state output: 1 bit

., -



Quantum Promise Problems (QPPs)

Our goal: Build complexity theory for quantum-input decision problem

® Quantum promise problems:
o L=(Ly,Ly): Ly and Ly are subsets of quantum states
o Given copies of quantum state Is>, decide if Is>isin Ly or Ly
® Quantum input can be either pure or mixed
® Capture property testing, promise problems, distribution test
® Standard complexity theory cannot fully characterize QPPs
o BQP, BPP, NP are for “classical inputs” not “quantum states”



Complexity Theory for QPPs

® Many interesting problems in quantum are in this form
® product states, maximally mixed states, stablizer
states, matrix product state, etc.
® small-depth states, shadow tomography, etc.
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Complexity Theory for QPPs

® Many interesting problems in quantum are in this form
® product states, maximally mixed states, stablizer
states, matrix product state, etc.
O small-depth states, shadow tomography, etc.
o Breaking security in quantum cryptography

Our first motivation: Better characterize the security/hardness in
quantum crypto primitives



Quantum Primitives in Q Crypto

V2

- ¥ PRG PRF EFID OWF Com SKE SKA
Mlnlcrypt @ @ One-way Commitment© Secret Key @ (Secret Key)

Functions Encryption Authentication

Efficient, Far,
Indistinguishable
Distributions

One-way functions exist Pseudorandom Pseudorandom
Generators Functions

Microcrypt deR[dJm

May exist even if P = NP Unitaries

PRS

Pseudorandom
States

OWSG

One-way State
Generators

QBC EFI OT MPC

Efficient, Far Quantum Quantum Secure
i cient, Far, g x
Quant%lm - Indistinguishable Oblivious Multi-party
Commitment Quantum States Transfer Computation

QKD = QBC EFI OT MPC

Quantum Quantum Secure

Unconditionally
tum Bit Efficient, Far, ODblivi Multi-
Quantum Key Quan INdihneaishanl ivious ulti-party
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Source:




Security of Quantum Crypto Primitive

® Pseudorandom states (PRS): Generator generates quantum states
Glk> indistinguishable from Haar random states |IR>

Input: copies of |S> = G|k> or |R> output: [S> = Glk> or |R>

» »1/0



Security of Quantum Crypto Primitive

® One-way state generator (OWSG): Generator generates quantum
states GIx> hard to invert to classical inputs x

Input: copies of |S> = G|x> output: x

» 5



Security of Quantum Crypto Primitive

® EFI pairs: Generator generates two states p, and p,that are statistical
far but computational indistinguishable

Input: copies of p, for b=0 or 1 output: b

» »b



Complexity Classes for QPPs (pure version)

Let L=(Ly,Ly)

® pBQP: Given poly(n) copies of |s>, decide [s> in poly time
® pPSPACE: Given poly(n) copies of Is>, decide Is> in poly space

Is> € Ly or Ly

)




Complexity Classes for QPPs (pure version)

Let L=(Ly,Ly)

® pQIP: Verifier gets poly(n) copies of |s>, decides |s> with the help of a
malicious unbounded prover
® pQSZK,.: QIP, and the honest verifier cannot get info. other than Is> € Ly

ls>....|s> l

"

Full description
of |s>

s> € Ly or Ly




Complexity Classes for QPPs (pure version)

PQMA and pQCMA are pQIP(one-round) with quantum or
classical message from the prover

® pQIP: Verifier gets poly(n) copies of |s>, decides |s> with the help of a
malicious unbounded prover
® pQSZK,.: QIP, and the honest verifier cannot get info. other than Is> € Ly

ls>....|s> l

S

s> € Ly or Ly

Full description
of |s>




Complexity Classes for QPPs (mixed version)

Let L=(Ly,Ly)

mBQP: Given poly(n) copies of pg, decide ps in poly time
MmPSPACE: Given poly(n) copies of pg, decide pg in poly space
mQIP: Verifier gets poly(n) copies of pg, decides p with the help of a
malicious unbounded prover

MQMA: one round mQIP

MQCMA: one round mQIP with classical message

mQSZK,, : QIP & honest verifier cannot learn info. other than pg € Ly



# of Copies Matter

e Our choice:
e Single Machine (BQP, PSPACE): polynomial copies
e Interactive Proofs (QIP, QSZK,, ): prover unbounded copies

e Also reasonable to consider
® PSPACE: unbounded copies (require oracle access to the input
and able to discard qubits)
e QIP, QSZK,, : prover has polynomial copies
® lead to different complexity classes



Landscape of Pure QPP Complexity Class

Containment:
pBQP € pQCMA < pQMA < pPSPACE

pPSPACE

pQMA < pPSPACE is not trivial
because pPSPACE can only access
polynomial copies of input state



Landscape of Pure QPP Complexity Class

Containment:
pBQP € pQCMA < pQMA < pPSPACE

pPSPACE

Natural complete problem for
pQCMA, pQMA

o©rawp  variant of local-

pQLMA © 1.awp  Hamiltonian problem

@ LLHwWP
@ pSQOR

@ pQOR
@ pSQOR

Quantum OR lemma



Landscape of Mixed QPP Complexity Class

Containment:
mBQP € mQCMA € mQMA € mPSPACE



Landscape of Mixed QPP Complexity Class

Containment:
mBQP € mQCMA € mQMA € mPSPACE

Natural complete problem for
mQCMA, mQMA

©:awm  variant of local-
© reiwm - Hamiltonian problem

mQCMA

@ LLHwWM
@ mSQOR

Mixed version is non-trivial to define

@ mQOR

Quantum OR lemma
@ mSQO



Landscape of Mixed QPP Complexity Class

Separation:
mQIP € mPSPACE

mPSPACE

mQIP

mQCMA

@ LLHwWM
@ mSQOR




Landscape of Mixed QPP Complexity Class

Separation:
mQSZKy,|2] € mPSPACE

= mQSZKy,|2] € mQMA

Unconditional separation between
non-interactive and interactive proof.

mPSPACE

mQIP

mQCMA

@ LLHwWM
@ mSQOR

mQSZKny[2]




Landscape of Pure QPP Complexity Class

Separation:
pPSPACE pPQSZKy,|2] € pPSPACE

PQSZKny|2] £ pQMA

pQIP

pQCMA

@ LLHwP
@ pSQOR

PQSZKpy[2]

(=
‘ pBQP
\\ __F




Landscape of Pure QPP Complexity Class

Equivalence:
PPSPACE pcoQSZKy, = pQSZKyy

The same as QSZK;,, = coQSZKj,,.

pQCMA

@ LLHwP
@ pSQQOR

pcoQSZKy,
pQSZKp,[2] = pQSZKy,




Landscape of Mixed QPP Complexity Class

Separation:
mcoQSZKy,, # mQSZKy,

The behavior between pure and
mixed QPP can be different.

mPSPACE

mQMA
@ LHwM
@ mQOR

mQCMA

© LLHwM ‘

@ MmSQUOK

\ /
mcoQSZK;,

mQSZKny[2]




Landscape of Pure QPP Complexity Class

Separation:
pPSPACE pBQP/qpoly & pBQP /poly

pQCMA

@ LLHwP
@ pSQOR u pcoQSZKp,
— PQSZKp,[2] = pQSZKny
S

'©.

~—

pBQP /poly




Characterize Hardness of Quantum Crypto Primitive

Minicrypt

One-way functions exist

N

Pseudorandom
Functions

Pseudorandom
Generators

Microcrypt

May exist even if P = NP

2. QPP complexity
provide new hardness
resource for microcrypt

and unconditionally

secure primitive

0):10

Quantum Bit
Commitment

QKD

Quantum Key
Agreement

Unconditionally
Secure
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EFID

Efficient, Far,
Indistinguishable
Distributions
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Quantum Bit
Commitment
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Efficient, Far,
Indistinguishable
Quantum States

&

v

OWF

One-way
Functions

PRU

Pseudorandom
Unitaries

PRS

Pseudorandom
States

OWSG

One-way State
Generators

EFI

Efficient, Far,
Indistinguishable
Quantum States

OT

Quantum
Oblivious
Transfer

Source:

SKE
@ Secret Key @

Encryption

SKA

(Secret Key)
Authentication

Com

Commitment

1. Microcrypt primitives
imply natural separation of
QPP complexity classes

OT

Quantum
Oblivious
Transfer

MPC

Quantum Secure
Multi-party
Computation

MPC

Quantum Secure
Multi-party
Computation

Barak Nehoran

Crypto24 talk slides



Our results: Applications to Crypto

Microcrypt:
PRS, pPOWSG

mMOWSG

EFI

Unconditional quantum crypto:
Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (quantum auxiliary model)



Our results: Applications to Crypto

Microcrypt:
PRS, pOWSG [EZZ=) pBQP # pQCMA

mOWSG ~ [IZ==) mBQP # mQCMA

By search to decision for
for pQCMA and mQCMA.

EFI

Unconditional quantum crypto:
Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)



Our results: Applications to Crypto

Microcrypt:
PRS, pOWSG [EZZ=) pBQP # pQCMA

mOWSG ~ [IZ==) mBQP # mQCMA

prover has poly copies input

mBQP HmQSZKP°?
EFl

mBQP #+# mPSPACE

Unconditional quantum crypto:
Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)



Our results: Applications to Crypto

Microcrypt:
PRS, pOWSG [EZZ=) pBQP # pQCMA

mOWSG ~ [IZ==) mBQP # mQCMA

mBQP # mQSZKPo"

mBQP #+# mPSPACE

Unconditional quantum crypto: => relativization barrier for EFI!

Quantum auxiliary-input EFI

EFI

Statistical binding, computational hiding commitment (auxiliary-input model)
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Our results: Applications to Crypto

Microcrypt:
PRS, pOWSG [EZZ=) pBQP # pQCMA

mOWSG ~ [IZ==) mBQP # mQCMA

mBQP # mQSZKPo"

avgpQCZKy, is hard =) EFI [y

Unconditional quantum crypto:

mBQP #+# mPSPACE

Quantum auxiliary-input EFI

Statistical binding, computational hiding commitment (auxiliary-input model)




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Auxiliary-input model: (setup phase)
|¢)®poly(n) |¢)®poly(n)




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Auxiliary-input model. (commit phase)

Committer Register C Receiver

On input (b,|¢>®poly(n))’ —

prepare |Y,)cr and send
register C to receiver.




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] construct a unconditional-secure computational
hiding statistically binding commitment scheme in an auxiliary-
input model.

Auxiliary-input model: (reveal phase)

Committer Receiver
Send bit b and register R Run Verify on register
to the receiver. Bit b, Register R CR, b and [¢)®", then

— return the output.




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
o Secure against QPT adversary with quantum advice

Unconditional Computational Hiding:
« Cpartof |Yy)cr and |1;)-r are only computational indistinguishable

« Without using any computational assumption



Unconditional Secure Commitment Scheme

e [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
o Secure against QPT adversary with quantum advice
e Open question: Auxiliary-input unconditional-secure statistically
hiding computational binding commitment scheme?




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
o Secure against QPT adversary with quantum advice
e Open question: Auxiliary-input unconditional-secure statistically
hiding computational binding commitment scheme?

Our results:
@ Auxiliary-input unconditional-secure perfect hiding computational
binding commitment
o Secure against QPT adversary with classical advice




Unconditional Secure Commitment Scheme

e [Qia24, MNY24] Auxiliary-input unconditional-secure
computational hiding statistically binding commitment scheme
o Secure against QPT adversary with quantum advice
e Open question: Auxiliary-input unconditional-secure statistically
hiding computational binding commitment scheme?

Our results:
@ Auxiliary-input unconditional-secure perfect hiding computational
binding commitment
o Secure against QPT adversary with classical advice
e Lead to unconditional pBQP/gpoly # pBQP/poly



Unconditional Separation and
Unconditional Cryptography



Unconditional Separation and
Unconditional Cryptography



Three Separation Results:

e Thm: mQSZK,,[2] € mALLP°Y

o Cor: mQIP € mPSPACE _
sample complexity

type of separation
e Thm:pQSZK,,[2] € pALLP°Y p/mC, & p/mALLPOY

o Cor:pQIP ¢ pPSPACE

e Thm:pBQP/poly + pBQP/qpoly  computational type of
separation

p/mC; € p/mALLP°Y

!

unconditional cryptography




Three Separation Results:

e Thm: mQSZK,[2] € mALLP°Y
o Cor: mQIP € mPSPACE




Quantum Promise Problem L,,;,

Liix = (LY: LN)

Ly = {UphaiU',V U € U(n)}

1 z
I L .
ie{0,1}n"1

U(n) be the set of n-qubit unitary
Thm: L,,;,, € mALLP°Y

Thm: L,,;,, € mQSZKj,,[2]
m) 1()SZK;,,[2] € mALLPOY

Cor: mQIP € mPSPACE



1
: ol Phalf = 5u—q )]
Theorem: L,,,;,, & mALLP°"Y 2 {;

® Thm [CHWO7]: For any polynomial q(-) and all sufficiently large n, for
all algorithm C, the following hold:

Qq((n)
'Pr lc <(21_n) q )= 1] = B [0 (o)™ ™) = 1] < 52

NO Instance Random Yes Instance




Linix = (LY: LN)
Ly = {UppaUT,V U € U(n)}

Theorem: L,,;,, € mMQSZK;,|2] by

N Gn

Graph non-Isomorphism Like Protocol:
Prover Verifier
b=0 b=
1\2"  @n Qn (1 Qn
((Z_n) ;pm ) VS (pln '(2_") ) b (_{0’1}
o

Accept if b’=Db




Linix = (Ly,Ly)
Ly = {UppasUT,V U € U(n)}

Completeness i
N — ﬁ
Graph non-Isomorphism Like Protocol:

Prover Verifier

Accept if b’=Db
Completeness: 1 — negl(n):

Xn
Trace distance between (an) and pg?;" iIs 1 — negl(n).



Linix = (Ly,Ly)
Ly = {UppasUT,V U € U(n)}

Soundness I
Ly = {ﬁ}
Graph non-Isomorphism Like Protocol:
Prover Verifier

Accept if b’=Db
Soundness: %

Because p;,, = an the case b = 0 or 1 are identical.



Linix = (Ly,Ly)
Ly = {UppasUT,V U € U(n)}

Statistical HV Zero Knowledge i
N — ﬁ
Graph Non-Isomorphism Like Protocol:

Prover Verifier

Accept if b’=Db

Statistical HV zero knowledge:
Similar to Graph Non-Isomorphism Protocol.



Three Separation Results:

e Thm:pQSZK[2] & pALLP°Y
o Cor:pQIP & pPSPACE




Quantum Promise Problem L,
Lyix = (Ly, Ly)
LY = {UphalfUT,V U e [U(Il)} 1
Phalf = on-1 Z |2

I
L — 1~ i n-1
N {Zn} ourify l (0,1}

Lpure = (LY' LN) 1
B ) , Lo |EPR) = — Z [i)]0)
Ly == {U @ U“|HALF),VU*, U* € [U(n)} Vet Ko

Ly ={l  UIEPR),V U € U(n)} |HALF) = 0i)|0i)

ie{o,1}n-1

1
Noi
Thm: L, & pALLP®Y
Thm: Lyyre € pQSZKy,[2]

m) ,()SZK,,[2] € pALLPOY
Cor: pQIP & pPSPACE



Theorem: Ly, & pALLP®Y

® Theorem [CWZ24](informal): Let L = (Ly,Ly) be a mixed QPP.
Let L’ be the purified version of L. Then sample complexity for deciding L and
L’ are the same.

Lyix = (Ly, Ly) Lpure = (Ly, Ly)

— T
Ly = (Upnay U7,V U € D] ‘ Ly = (U @ U2|HALF),¥ U, U? € U(n)}
Ly = {5 purify Ly = {I ® U[EPR),V U € U(n)}




Lpure = (Ly,Ly)
Ly == {Ul (04 U2|HALF),V Ul,U? € U(n)}

Theorem: Lpure € pQSZKhv [2] Ly =={(U ® U)|EPR),V U € U(n)}

The same Graph Non-Isomorphism Like Protocol
except that we set p;,, = first half of |¢;,,).

Prover Verifier

)®”) b < {0,1}

Accept if b’=Db



Three Separation Results:

e Thm:pBQP/poly +# pBQP/qpoly




Quantum Promise Problem Ly, ({U"})
Lpure = (Ly, Ly)

1
Ly = {U' ® UZ|HALF),Y U',U? € U(n)} IEPRY = Tam

Ly :={l ® U|EPR),Y U € U(n)}

Fix a hard U~ l

Lpure* ({U™}) = (Ly, Ly)
Ly = {Ul ® U?|HALF),Y U, U? € U(n)}
Ly = {l ® U*|EPR)]

|HALF) =

Thm: Exist {U"} such that L,,,.»({U*}) € pBQP /poly
Thm: For all {U*}, L,,-.»({U"}) € pBQP/qpoly

Cor:pBQP /poly #+ pBQP /qpoly



Thm: For all {U™}, Lyyrex({U™}) € pPBQP/qpoly

Lpure* = (Ly, Ly)

Ly = {U!' ® U?|HALF),v U',U? € U(n)}
Use Swap Test Ly = {(I ® U)|EPR)) ’

e Quantum advice: [¢p*) = 1 &Q U*)|EPR)

e Algorithm: input |¢;,), advice |¢™)
o Apply swap test to |¢p;,) and |¢p™)
o Output 1if swap test fail
o Otherwise output O.

e Completeness: > % (because F(|pn), [¢p™)) < %)

e Soundness: =0




Thm: Exist {U”} such that Ly,,..«({U*}) € pBQP /poly
Lpure = (Ly, Ly)

Ly = {U' @ U2|HALF),V U, U? € U(n)}
Ly = {I ® U|[EPR),V U € U(n)}

® [CWZ24]& [CHWO7/] => average case hardness of L

® For any polynomial q(+) and all sufficiently large n, for all algorithm C, the
following hold:

n n q(n)
| Uelljcrl‘arn [C(l ® UlEPR) )®q( )) - 1] B L/1,U2<P—II‘-Iaarn[C(U1 ® UZlHALF) )®q( )) - 1]' = n
| ] A ,
: i
Uniformly Random

Uniformly Random
Yes Instance

No Instance




Thm: Exist {U} such that Ly,,..«({U*}) € pBQP /poly

® By Haar random concentration argument in [Kre21] :

@ For any polynomial q(-) and all sufficiently large n, for all algorithm C, with

n
probability 1 — exp(—24 ) over U « Haar, such that:
| Pr[C(I ® U |EPR))®1™) = 1]

- [C(U* ® U2|HALF))®1W) = 1]| < M +273

Ul, U2<—Haar




Thm: Exist {U} such that Ly,,..«({U*}) € pBQP /poly

® Switch quantifier by a union bound:

® For any polynomial q(-) and all sufficiently large n, there exist U* such that for all
polynomial size circuits C

| Pr[C(I ® U* |[EPR))®I™) = 1]

— [C(U' @ U2|HALF))®1W) = 1]| < M +273

Ul, U2<—Haar




Unconditional Separation and
Unconditional Cryptography




Thm: There exist a commitment scheme satisfy
computational sum-binding* and perfect hiding
in auxiliary-input model.

*secure against non-uniform adv with classical advice



Construction — Auxiliary Input State
|p) =1 Q@ U*|EPR) Fix U*in Lyye~({U*}) € pBQP/poly

|¢)®poly(n) |¢)®poly(n)

e N

Committer Receiver




Construction — Commit Algorithm
() =1 Q@ U*|EPR)  FixU*in Lyyre+({U*}) & pBQP/poly

Com(b, [¢p)®™) > [)cr:
1Yo)cr == |EPR)c,r, = |EPR)¢ R

|¢1>CR = |¢>C1R1 |¢>Can Let C = {Ci}i=1..n’ R = {Ri}i=1..n'

Committer Receiver

Prepare |Yp)cr & Register C
send register C



Construction — Verify Algorithm
() =1 Q@ U*|EPR)  FixU*in Lyyre+({U*}) & pBQP/poly

Com(b, [¢p)®™) > [)cr:
1Yo)cr == |EPR)c,r, = |EPR)¢ R
[Y1der = |¢)01R1 |¢)can

Verify(b, |¢)®", CR) —» L/T:

b = 0: check CR == [1)o) by {loX¥ol, I — [YoXWol}-
b =1: check CR == |y;) by swap-test.

Let C :={C;};=1 ., R = {R;}i=1 n-

Committer Receiver

Send b & register R Bit b, Register R Run Verify(b, |$)®™, CR)



Ours Construction:
Fix a hard unitary:
U*:c?" - %"

Auxiliary input state:

1
§) = ﬁxe{;}nmmu )

Com(b, [$)®™) = [Pp)cr
[Yodcr = |EPRy)c,r, " |IEPRy)c R,
[Y1)cr = |¢>C1R1 |¢)can

Let C = {Ci}i=1..n’ R = {Ri}i=1..n-

Verify(b, |$)®", CR) —» L/T:
b = 0: check CR == |y) by
{lwoXWol, I = o) (Wol}-

b =1: check CR == |y);) by swap-
test.

[Qia24, MNY24]

Fix a “hard” function:
H*:{0,1}" - {0,1}3"

Auxiliary input state:

1

= — H*
16) @xe{;}nl ())elx)x

Com(b, [¢)®™) = [P}, )cr

[Yodcr = |EPR3,)c R, = |EPR3y)c R,
[Y1)cr = |¢)61R1 |¢>Can

Let C == {Ci}i=1.n, R = {Ri}i=1.n-

Verify(b, |¢)®", CR) - L/T:
b =0/1: Check CR == [y,)) by swap-
test.

Can also use QPP to capture the
unconditional computation hardness of

[Qia24,MNY24].




Source of Comp. Hardness in Ours Construction:

Lyure ({(U*}) = (Ly, Ly) U " >
Ly == {U' @ U?|HALF),v U',U? € U(n)}

Ly ={U &® U")|EPR)}

Thm: Exist {U"} such that L,,,.~({U"}) € pBQP /poly

Thm: For all {U*}, Lyyrer({U*}) € pALLPOY

Source of Comp. Hardness in [Qia24, MNY24]:
Linix({H™}) = (Ly, Ly) H*:{0,1}" - {0,1}3"
|H* )WH™ ()1}

Thm: Exist {H*} such that L,,,;,~({H*}) € mBQP /qpoly
Thm: For all {H*}, Lyyrer({H*}) € mALLPOY




Construction — Commit Algorithm
|p) =1 Q@ U*|EPR) Fix U*in Lyye~({U*}) € pBQP/poly

Com(b, [$)®™) > |y, )cr:

|¢O>CR | )C1R1 | >Can Let C := {Ci}i=1..n’ R = {Ri}i=1..n'

[Y1dcr = |¢)61R1 |¢)can

Satisfy perfect hiding

Committer Receiver

Prepare |Yp)cr & Register C

send register C —




Proof of Computational Binding

Lpure*({U;;}) ¢ pBQP/poly

Security of honest binding (0 to 1)

[Yan22] l

Security of sum binding




Adversary Break Honest Binding (0 — 1)
|@p) =1 Q@ U*|EPR) Fix U* such that L,,..~({U*}) & pBQP/poly

Com(b, [¢)®™) = [1hp)ck:
[Yodcr = |EPR>01R1 |EPR>can
[Y1)er = |¢)01R1 |¢)can
Verify(b, |¢)®n, CR) - L/T:

b = 0: check CR == [1)o) by {loX¥ol, I — [YoXWol}-
b =1: check CR == |y;) by swap-test.

(Honest Commit):

Adversary Receiver

Let C :={C;};=1 ., R = {R;}i=1 n-

Prepare [V, )cr & Register C

send register C



Adversary Break Honest Binding (0 — 1)
|@p) =1 Q@ U*|EPR) Fix U* such that L,,..~({U*}) & pBQP/poly

Com(b, [¢)®™) = [1hp)ck:
[Yodcr = |EPR>61R1 |EPR>can
[Y1)er = |¢)C1R1 |¢)can
Verify(b, |¢)®n, CR) - L/T:

b = 0: check CR == [1)o) by {loX¥ol, I — [YoXWol}-
b = 1: check CR == |y);) by swap-test.

(Reveal Phase):

Adversary Receiver

Register R b =1, Register R
Adv The CR register = |1;)

Let C :== {C;};=1 n, R = {R;}i=1.n-



Adversary Break Honest Binding (0 — 1)
|@p) =1 Q@ U*|EPR) Fix U* such that L,,..~({U*}) & pBQP/poly

Com(b, [¢)®™) = [1hp)ck:
[Yodcr = |EPR>61R1 |EPR>can
[Y1)er = |¢)C1R1 |¢)can

Verify(b, |¢)®", CR) —» L/T:

b = 0: check CR == [1)o) by {loX¥ol, I — [YoXWol}-
b = 1: check CR == |y;) by swap-test.

e

Use Adv to decide L, .x({U™}).

Let C :== {C;};=1 n, R = {R;}i=1.n-



Proof of Honest Binding ~ (U*)(X)n

Lpure* ({U™}) = (Ly, Ly)
Ly = {Ul ® U?|HALF), Y U, U? € U(n)}

Ly = {(I ® U")|EPR)}

e Algorithm: input |¢;,,)®"

Generate |[EPR)¢, g, |EPR)¢,r, (L€t C == {Ci}iz1.0, R = {R;}i=1.n)
Apply Adv to the R part get |¢")

Apply n-swap test to |¢') and |¢;;,)O"

Output O if n-swap test pass.

Otherwise output 1.

O O O O O

e Completeness: > 1 — negl(n) (because F(|¢pin), |[EPR)) < z)
e Soundness: <1 — 1/poly(n) (by the binding)



Proof of Computational Binding

Lpure*({U;;}) ¢ pBQP/poly

!

Security of honest binding (0 to 1)

Security of sum binding




Proof of Computational Binding

e Thm[Yan22]. For canonical quantum bit commitment, honest
binding imply sum-binding.

® Canonical Quantum Bit Commitment
o Two efficient unitary {Qg, 01}

o Com(b):|yp) = Qp]0)
o Verify(b,CR): check == [y,) by {|YpXWp|, I — [Yp)XWpl).

® Our constructis “semi-"Canonical Quantum Bit Commitment
o Com(0): |Yo) = |EPR)®"
o Verify(0,CR): check == |1g) by {[0){Wol, I — [PYoXol).

@ The technique of [Yan22] can be applied as well



Discussion & Open Problems

e Natural and useful complexity theory to study
o Different landscape — classical vs pure vs mixed

e Help understand computational hardness in quantum crypto
o Further characterization? Worst-case hardness <=> EFI?
o Impagliazzo’s five worlds?

e Other applications
o Interaction helps in quantum property testing
o Hardness of quantum-input unitary synthesize problem




Discussion & Open Problems

® Many open questions in QPP complexity theory
o More unconditional separation or barrier?
m Note: relativize barrier still hold

o Complete problems for, e.g., PSPACE?

o p/mPSPACEP°Y vs.p/mQIPP°Y?

o p/mQIP =p/mQIP[3]?

o p/mQSZKy, = p/mQSZK?

o ZKforp/mQMA? [Mal'25]

o Complexity of search p/mQMA witness — state synthesize complexity
o Circuit complexity for QPP?




