Improved Search-to-Decision Reduction for
Random Local Functions

SG Crypto Workshop
Tan Kel Zin, Prashant Nalini Vasudevan

National University of Singapore



Local Cryptography

Is it possible to construct Cryptography Primitives (PRG, OWF) with constant depth circuit
output

Each output bit only depends on
constant number of input bits

input O

NCO class: Functions definable by Constant Depth Circuit with bounded fan-in gates

Applications

- Fast Parallel Cryptography
- iO Constructions [LV17, JLS21, JLS22]
- Secure Computation [ADI+17, BCG+17, BCM23, BCM+24]



Feasibility of Local Cryptography

Negative Results

- Impossibility of local PRG with nA(polylog(n)) outputs [LMN93]
- Impossibility of local PRG with superlinear stretch in NCO depth 3 [CMO1]
- Impossibility of local PRG with superlinear stretch NCO depth 4 [MSTO3]

Positive Results

- Existence of local OWF and sublinear stretch local PRG, assuming OWF and PRG in NC1 (Log Depth)
[AIKO6]

- Construction of linear stretch local PRG assuming the hardness of the average case MAX-3LIN problem

[AIKO8]

Is there a more natural Construction of local PRG and OWF?



Random Local Function [Gol00]

Fix a d-ary predicate function P - ]Fg — [, for some constant d >= 3
P(S) = S1 + So + S3 + S4S5
For each output bit, randomly select input bits and feed to the predicate

output

input
Inputs for 2nd output bit SQ = <2, 4, 1, 5, 6)
2nd output bit ¢ p($)2 = P(S2, 84, S1, S5, S¢)

Candidate Local OWF: Given (G, fc.p(s)), recover input s

Randomly sample a
bipartite graph G

fap:Fy —F
G =(S1,Ss,...,5n)

Si = (J1,-- -+ Ja)
fG,P<S)i - P(Sjn cee 7de)



Hardness of Inversion

. TN m
Evidence of Hardness fG,P : IE“2 — FQ

P:F¢ =T,
- Myopic and Drunken backtracking algorithms fails on Predicate with G = (1,5 Sin)
- ) 9 y Mm
linear components [AHI05, CEMTO09, Its10] S = (j i)
T 1ye--s
P((s) =81+ -+ s+ Q(Sk+l, . ,Sd> fGP(5>z' _ P(Sjl, o de)
- XOR-AND(3,2) with output length nA1.49 secure against F2-linear
tests and semi-definite programming algorithms [OW14]
P(s) = s1 + S92 + S3 + 5485
Negative Hardness Suggested Predicate [AL16]
- Linear & Degenerate Predicate [Gol00] P(s)=s1+ -+ sg+ Maj(sgs1,---,5q)

- Low F2 Algebraic Degree [AL16]
- High correlation with small subset of inputs [BO09, ALI6, Applé]

- Regardless of Predicate, when output size m = O(n%@d/3J log n) efficient algorithm exists [Applé]



Candidate Local PRG

- - :FY — FY
Take inversion as search fG,P 2 2

. d
Distinguishing output from random is decision Py =

G =(51,5,...,5n)
Search: Given (G, fa.p(s)) , find's Si=(j1,-- - Ja)

$)i = P(Sj,,...,8;
Decision: Given G, distinguish f¢ p(s) from random binary string fo.p(s) (53 is)

Search-to-decision reduction gives an candidate for Local PRG

Search Hardness => Decision Hardness

Local OWF => Local PRG

IDEAL : Search with m outputs is hard, then Decision with m outputs is hard

CURRENTLY : Search with m outputs is hard, then Decision with much less than m outputs is hard



Previous Result

Suppose P :[F¢ — T, is sensitive (Flipping a variable changes the output)
P(s) = s1+ Q(s2,...,54q)

Given an & advantage decision algorithm for sensitive predicate with output size m = poly(n)

Then there exists a search algorithm for the same predicate with
e [Appl2] outputsize O(m?/e?) |, locality d

e [BRT25] output size O(nm/e?) , locality d+1

Why is the sensitivity of predicate necessary?



Our Result

Main Theorem
Given an £ advantage decision algorithm for any predicate with output size m = poly(n)

Then there exists a search algorithm for the same predicate with

output size O(n*m/e?) , locality d

Comparison with previous result
All reductions the sensitivity of Predicate
e [Appl2] outputsize O(m?/s?), locality d
e [BRT25] output size O(nm/e?) , locality d+1

Our result lose a factor of n compared to [BRT25] but generalized to any predicate and maintained locality



Implication of Our Result

- Opens up the possibility of local PRG from more predicates

- Lack of sensitivity means less structure, could be harder for attacks

Technical Contribution

- Our technique differs from [Appl2, BRT25], relies minimally on the predicate

- Our technique of performing non-trivial mixing on the hypergraphs could be useful in other fields



Overview of Technique



Notations

Denote o <«— [) as x is sampled from D; uniformly sample if D is a set
Denote XI; as the i-th bit of binary string x

Denote Gn,m’d as the set of all hypergraphs with

- nvertices G =(51,5,...,5n)
- m ordered hyperedges S; = (ji
- dvertices in each hyperedge ' ’



Predictor

Using a Distinguisher with advantage 8
Construct algorithms SQ, 53, Cee Sn
Such that each SZ given an input (G, fG,p(S)) can predict S1 D S;

with small advantage Q(&‘/t) where { = O(n log(n/e))

Amplification

The prediction can be amplified with independent inputs over the same secret



Predictor Algorithm

We construct a randomised transformation /" such that

o If S1 = S; ,then (T(G), fa.p(s)) is (G, fa.pr(s))
o If Sy # S; , then (T(G),fG,P<S)) looks like (G, b) , where b is random

The predictor simply fed (7'(G), fa.p(s)) to the Distinguisher and output its response

Key of proof: How close are (1'(G), fa.p(s)) and (G,b) when Sy # S;



Transformation

Objective
° If S1 = Si ., then (T(G)afG,P<S)) is (G7 fG,P(‘S))
e If S F# S; ,then (T(G), fa.p(s)) looks like (G, b) , where b is random

Transformation

Define Transformation Ta,b : Gn,m,d — Gn’m,d , where a,b € [n]

For each hyperedge S; = (j1,...,Jq4) in G = (51,5, ...,5m)
Transforminto S; = (ji,...,J,) and new hypergraph G’ = (S, S5,...,5..)

e Ifjisnotaorb, it remains the same

(1,2,a,3,b,a) — (1,2,a,3,a,b)

e Ifjisaorb,itswitches to the other value with prob half
Prlj;, = ji

if ]k §E {a7 b}

if g € {CL, b}

}—U
=
!
??‘\
I
8,
|
|
b—U
H
!
I

=1
1
b = -
=5



Key Property

e The uniform distribution is stable
under the transformation

T<Gn7m7d> — Gn7m7d
o |If Sq = Sp, the transformation has no

effect on the distribution

Output remains the same
P<517 Say 53, 8(1,) - P<Sla Say 53, Sb) ::
fa,p(s) = fr, ,c),p(s)

Transformation

Define Transformation T, : Gpm.a — Grma Where a,b € [n]
For each hyperedge S; = (ji,...,ja) In G = (S1,S%,...,5n)
° If j is not a or b, it remains the same

° If jis a or b, it switches to the other value with prob half

Distribution is the same

(T(G), fa.p(s)) = (T(G), fr).r(s)) = (G, fo.p(s))

o If S, 75 Sp , transformed distribution looks closer to random (effective)

Output might not be same

fa.p(S) # fr,,).p(S)

Hypergraph and Output less coupled

T(G) Less coupled with fG7p(S)

After t = O(nlog(nm/c))transformation, hypergraph is independent of fg p(s)




Key Property

After t = O(nlog(nm/e)) transformation, Transformation

hypergraph is independent of fG,p(S> Define Transformation T, : Gpm.a — Grma Where a,b € [n]
For each hyperedge S; = (ji,...,ja) In G = (S1,S%,...,5n)

For any starting hypergraph G, e Ifjisnotaorb, it remains the same

randomly choose ai and bi ° If jis a or b, it switches to the other value with prob half

Tasr © - - 0Ty 5, (G) = Uniform(G,, ,.4)

(Tat,bt 0...0 al,bl(G), fG,p(S)) R (G/, fG’p(S)) For a randomly sampled G’

Proof Intuition
- Think of transformation as a markov process, t = O(nlog(nm/c)) is the mixing time
- After t transformations, every value would be touched by several transformation

- The random assignment happens independently for each a or b, it quickly randomises the whole

hypergraph



Summary

Question: How close are (T(G), fa,p(s)) and (G,b) when S1 # s;
Answer : After t = O(nlog(nm/e)) transformation,
(Tat,bt ©...01Lay b (G)7 fG,P(S)) ~ (G7 b)

Therefore one transformation is a step closer to random

Algorithm S; giveninput (G, fg p(s)) predict S1 B S;
Predictor samples a random r < [0,¢ — 1] apply r random transformations 74,5, on G
Then apply 77 ,; once

The predictor simply fed (7'(G), fa.p(s)) to the Distinguisher and output its response



Generalization

Non-Constant Sparsity

Our technique works for random local function with non constant sparsity d = polylog(n)

Minor additional requirement on the advantage & and output size m
Distinct values in the hyperedges

A common model for random local function is to have distinct values in each hyperedge

Our reduction still work with a slight loss in constant factor
Noisy Predicate

Motivated by Learning Parity with Error Problem (LPN), we showed that our reduction still applies

when the predicate is added with some random noise



Conclusion

Open Problems

- Further lessen the gap of the output size between search and decision
- Utilize the reduction technique on other problems

- Find alternative family of Predicate (aside XOR-MAJ) and show OWF hardness



Thank You



