

Commitments are equivalent to statistically verifiable one-way state generators

Rahul Jain

Centre for Quantum Technologies
National University of Singapore

Joint work with Rishabh Batra (CQT, NUS)

FOCS 2024; TQC 2025; QCrypt 2024; ArXiv:2308.07340

Commitments

- One of the most fundamental primitives in cryptography.
- 2 parties: a sender and a receiver.
- Commit phase: the sender commits to some message m to the receiver.
- Reveal phase: the sender reveals m to the receiver.
- We want:
 1. **Hiding**: the receiver should not be able to learn m during the commit phase.
 2. **Binding**: the sender should not be able to reveal $m' \neq m$ during the reveal phase.

One-Way Functions (OWF)

Classical one-way functions

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

- efficiently computable
- hard to invert by a (non-uniform) PPT (probabilistic polynomial time) adversary
- OWF are equivalent to commitments, pseudorandom generator (PRG), pseudorandom function (PRF)

Quantum-secure one-way functions

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$

- efficiently computable
- hard to invert by a (non-uniform) QPT (quantum polynomial time) adversary

Can we do anything more in the quantum world?

Quantum One-Way State Generator (OWSG) [MY22]

An m -copy one-way state generator (OWSG) is a set of algorithms (here λ is the security parameter):

1. $\text{KEYGEN}(1^\lambda) \rightarrow x$: a PPT algorithm that outputs a classical key $x \in \{0, 1\}^n$.
2. $\text{STATEGEN}(1^\lambda, x) \rightarrow \phi_x$: a QPT algorithm that outputs a (mixed) quantum state ϕ_x corresponding to the key x .
3. $\text{VER}(1^\lambda, x', \theta) \rightarrow \top/\perp$: a QPT algorithm that on input a string x' and a state θ gives as output \top or \perp .

statistically verifiable (sv)-OWSG: VER may not be efficient.

OWSG

Correctness

$$\Pr[x \leftarrow \text{KEYGEN}(1^\lambda), \phi_x \leftarrow \text{STATEGEN}(1^\lambda, x), \top \leftarrow \text{VER}(1^\lambda, x, \phi_x)] \\ \geq 1 - \text{negl}(\lambda).$$

Security

For any (non-uniform) QPT adversary \mathcal{A} ,

$$\Pr[x \leftarrow \text{KEYGEN}(1^\lambda), \phi_x \leftarrow \text{STATEGEN}(1^\lambda, x), x' \leftarrow \mathcal{A}(1^\lambda, \phi_x^{\otimes m}), \\ \top \leftarrow \text{VER}(1^\lambda, x', \phi_x)] = \text{negl}(\lambda).$$

Note: VER needs 1 additional copy of the state ϕ_x to verify.

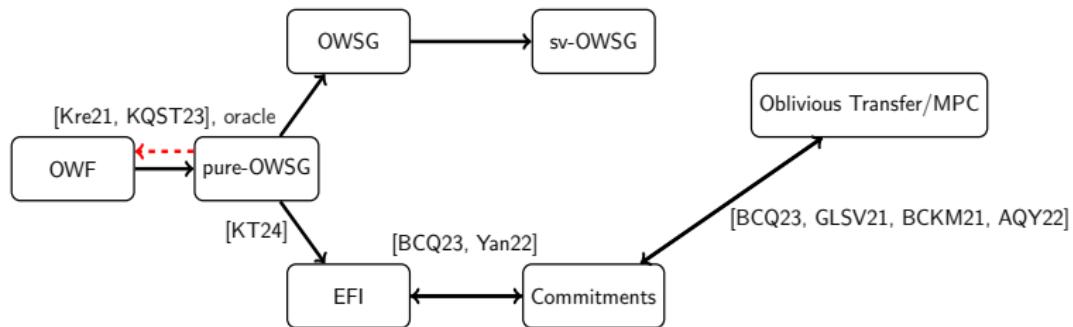
Efficiently samplable, statistically Far, computationally Indistinguishable pair of quantum states (EFI) [BCQ23]

EFI generator: a QPT algorithm $\text{STATEGEN}(1^\lambda, b) \rightarrow \rho_b$

1. $\rho_0 \approx_{\text{negl}_C} \rho_1$.
2. ρ_0 and ρ_1 are statistically distinguishable with noticeable advantage, that is, $\frac{1}{2} \|\rho_0 - \rho_1\|_1$ is a noticeable function in λ .

We call (ρ_0, ρ_1) an EFI pair.

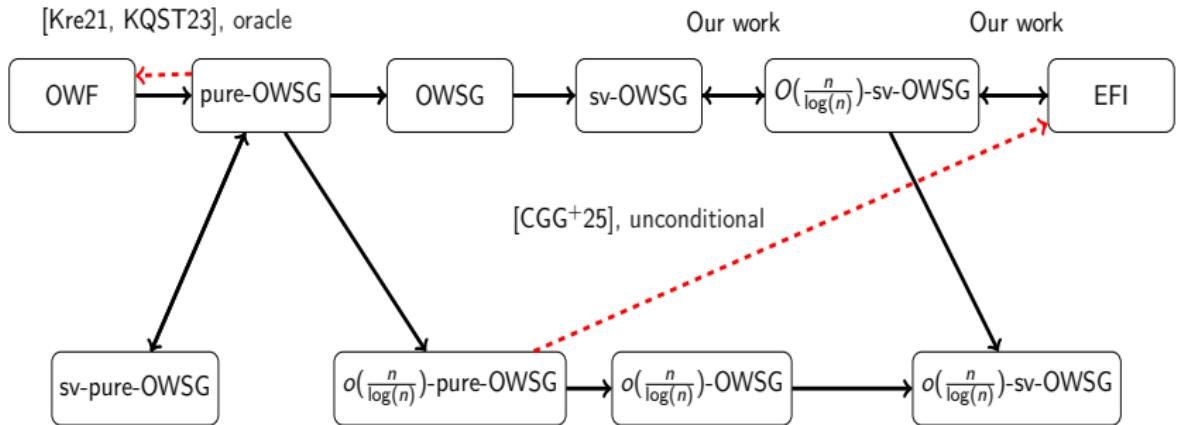
Motivation



- EFI-pairs imply oblivious transfer and secure-multi-party computation.
- There is an oracle separation between pure-OWSG and quantum-secure one-way functions. Hence, pure-OWSG are potentially weaker objects than OWF [Kre21, KQST23].

What is the weakest OWSG from which we can get EFI?

Our results



HILL: OWF \implies EFI

- Assume f is a one-way permutation.
- Let g be a hardcore function of output length $O(\log n)$.
- EFI
 - $(P, Q) = (f(X)Rg(X, R), f(X)R \otimes U_{|g(X, R)|})$
 - since g is hardcore: $P \approx_{\text{negl}_C} Q$
 - since f is injective: $S(P) + O(\log n) \leq S(Q)$ and hence (P, Q) are statistically far
 - (P, Q) are efficiently samplable

HILL: OWF \implies EFI

- f is OWF.
- H is seed and $H^l(X)$ is l -bit output of a seeded extractor.
- Append $HH^l(X) : (X, H) \rightarrow f(X)HH^l(X)$
 - extracts residual entropy in X given $f(X)$
 - $(X, H) \rightarrow f(X)HH^l(X)$ (sort of) an injective function
 - requires $l \approx S(X|f(X))$ (\approx means up to additive $O(\log n)$)
 - need to ensure $(X, H) \rightarrow f(X)HH^l(X)$ is OWF
 - need $f(X)HH^l(X) \approx_{\text{negl}_c} f(X) \otimes H \otimes U_l$
 - forces $l \approx S_2(X|f(X))$ (collision entropy)
 - X conditioned on $f(X)$ is flat: $S(X|f(X)) = S_2(X|f(X))$
 - l depended on $f(X)$; finding l from $f(X)$ not efficient
 - handled this via intricate, elaborate arguments

HILL: OWF \implies EFI

- EFI
 - $(P, Q) = (f(X)HH^\ell(X)Rg(X, R), f(X)HH^\ell(X)R \otimes U_{|g(X, R)|})$
 - since g is hardcore: $P \approx_{\text{negl}_C} Q$
 - injectivity ensures P and Q are statistically far
 - (P, Q) are efficiently samplable
- PRG
 - $(X^{\otimes t}, H^{\otimes t}, R^{\otimes t}, S_1, S_2) \rightarrow \text{Ext}(X^{\otimes t}, S_2) \text{ Ext}(P^{\otimes t}, S_1)$
 - Ext: seeded extractor
 - determining output lengths of the extractors is not efficient
 - handled via **stretching** the output of PRG

Quantum case issues

- cannot condition on a quantum state
- multiple copies of $f(x)$ to adversary have to be handled
- do not know how to stretch the output

Imbalanced EFI [KT24]

An s^* -imbalanced EFI: a QPT algorithm $\text{EFI}_s(1^\lambda, b) \rightarrow \rho_b(s)$ (s is advice string)

1. For all $s \leq s^*$: $\rho_0(s) \approx_{\text{negl}_C} \rho_1(s)$ (computational indistinguishability).
2. For all $s \geq s^*$: $\rho_0(s)$ and $\rho_1(s)$ are statistically distinguishable with noticeable advantage, that is $\frac{1}{2} \|\rho_0(s) - \rho_1(s)\|_1$ is a noticeable function in λ .

- We show a construction of imbalanced-EFI from sv-OWSG.
- We use [KT24] for imbalanced-EFI \implies EFI.

Our construction: Imbalanced-EFI from sv-OWSG

EFI _{k} ($1^\lambda, b$)

1. Input: security parameter λ and a bit b .
2. Subroutine: an m -copy sv-OWSG with key-length n that generates a one-way state τ^{XQ^m} .
3. For all $i \in [m], l \in [n]$ (g is a quantum hardcore function)

$$\tau_0(i, l) \stackrel{\text{def}}{=} Q^i H H^l(X) R g(X, R)_\tau,$$

$$\rho_0 \stackrel{\text{def}}{=} \sum_{i=1}^m \sum_{l=1}^n \frac{1}{mn} |i, l\rangle \langle i, l| \otimes \tau_0(i, l).$$

4. n_0 : number of qubits in ρ_0 , $t = \text{poly}(n, \lambda)$,

$$s_Q(k) = 4n_0 t - k + O(\log(t)).$$

5. If $b = 0$, output $\text{Ext}_Q(\rho_0^{\otimes t}, U_{s_Q(k)})$, where Ext_Q : quantum extractor.
6. If $b = 1$, output $U_{4n_0 t + 1}$.

Proof idea

- Consider

$$\tau_0(i, I) = Q^i H H^I(X) R g(X, R)_\tau,$$

$$\tau_1(i, I) = Q^i H H^I(X) R_\tau \otimes U_{|g(X, R)|}.$$

- To get an EFI we want:

$$\tau_0(i, I) \approx_{\text{negl}_C} \tau_1(i, I),$$

$$S(\tau_1(i, I)) - S(\tau_0(i, I)) \geq \frac{1}{\text{poly}(n)}.$$

- To ensure injectivity: $I \approx S(X|Q^i)_\tau$.
- To ensure $(X, H) \rightarrow Q^i H H^I(X)_\tau$ is OWSG: $I \approx S_2(X|Q^{i+1})_\tau$

$$S_2(X|Q^i)_\tau \stackrel{\text{def}}{=} -\log \left(\text{Tr} \left((\tau^{Q^i})^{\frac{-1}{2}} \tau^{XQ^i} (\tau^{Q^i})^{\frac{-1}{2}} \tau^{XQ^i} \right) \right)$$

- Therefore need,

$$I \approx S(X|Q^i)_\tau \approx S_2(X|Q^{i+1})_\tau.$$

Proof idea

- Identify an $i^* \in [m]$

$$S(X|Q^{i^*})_\tau \approx S(X|Q^{i^*+1})_\tau$$

- **Key technical contribution:** identify a good substate γ of τ
 - $q \cdot \gamma + (1 - q) \cdot \theta = \tau$
 - $q = \frac{1}{\text{poly}(n)}$
 - $I_{i^*} \approx S_2(X|Q^{i^*+1})_\gamma \approx S_2(X|Q^{i^*})_\gamma \approx S(X|Q^{i^*})_\gamma$
- Consider
 - $\sigma_0 \stackrel{\text{def}}{=} Q^{i^*} HH^{I_{i^*}}(X) Rg(X, R)_\gamma$
 - $\sigma_1 \stackrel{\text{def}}{=} Q^{i^*} HH^{I_{i^*}}(X) R_\gamma \otimes U_{|g(X, R)|}$
 - since $I_{i^*} \approx S(X|Q^{i^*})_\gamma$: $S(\sigma_1) - S(\sigma_0) \geq O(\log n)$
 - since $I_{i^*} \approx S_2(X|Q^{i^*+1})_\gamma$: $\sigma_1 \approx_{\text{negl}_C} \sigma_0$

Proof idea

- Consider

$$\begin{aligned}\tau_0(i^*, l_{i^*}) &\stackrel{\text{def}}{=} Q^{i^*} \mathcal{H}^{l_{i^*}}(X) Rg(X, R)_\tau \\ &= q \cdot \sigma_0 + (1 - q) \cdot Q^{i^*} \mathcal{H}^{l_{i^*}}(X) Rg(X, R)_\theta \\ \tilde{\tau}_1(i^*, l_{i^*}) &\stackrel{\text{def}}{=} q \cdot \sigma_1 + (1 - q) \cdot Q^{i^*} \mathcal{H}^{l_{i^*}}(X) Rg(X, R)_\theta\end{aligned}$$

- Since $q \geq \frac{1}{\text{poly}(n)}$: $S(\tilde{\tau}_1(i^*, l_{i^*})) - S(\tau_0(i^*, l_{i^*})) \geq \frac{1}{\text{poly}(n)}$
- Since $\sigma_1 \approx_{\text{negl}_C} \sigma_0$: $\tilde{\tau}_1(i^*, l_{i^*}) \approx_{\text{negl}_C} \tau_0(i^*, l_{i^*})$

Proof idea

- Since i^* and l_{i^*} cannot be efficiently determined, take a convex mixture:

$$\rho_0 \stackrel{\text{def}}{=} \sum_{i=1}^m \sum_{l=1}^n \frac{1}{mn} |i, l\rangle \langle i, l| \otimes \tau_0(i, l)$$

$$\begin{aligned} \rho_1 \stackrel{\text{def}}{=} & \sum_{i=1}^m \sum_{l=1}^n \mathbb{1}(i \neq i^* \text{ or } l \neq l_{i^*}) \cdot \frac{1}{mn} |i, l\rangle \langle i, l| \otimes \tau_0(i, l) \\ & + \frac{1}{mn} |i^*, l_{i^*}\rangle \langle i^*, l_{i^*}| \otimes \tilde{\tau}_1(i^*, l_{i^*}) \end{aligned}$$

Proof idea

- Since $S(\tilde{\tau}_1(i^*, l_{i^*})) - S(\tau_0(i^*, l_{i^*})) \geq \frac{1}{\text{poly}(n)}$

$$S(\rho_1) - S(\rho_0) \geq \frac{1}{\text{poly}(n)}$$

- Since $\tilde{\tau}_1(i^*, l_{i^*}) \approx_{\text{negl}_C} \tau_0(i^*, l_{i^*})$: $\rho_1 \approx_{\text{negl}_C} \rho_0$
- Take t ($\in \text{poly}(n)$) copies $\rho_0^{\otimes t}, \rho_1^{\otimes t}$
 - $S_0(\rho_0^{\otimes t}) \rightarrow t \cdot S(\rho_0)$; $S_1(\rho_1^{\otimes t}) \rightarrow t \cdot S(\rho_1)$
 - $S_1(\rho_1^{\otimes t}) >> S_0(\rho_0^{\otimes t})$
 - $\rho_1^{\otimes t} \approx_{\text{negl}_C} \rho_0^{\otimes t}$
- Ext_Q removes non-uniformity in $\rho_1^{\otimes t}$ ($k^* \stackrel{\text{def}}{=} S_1(\rho_1^{\otimes t})$)
 - $k \leq k^*$: $\text{Ext}_Q(\rho_0^{\otimes t}, U_{s_Q(k^*)}) \approx_{\text{negl}_C} \text{Ext}_Q(\rho_1^{\otimes t}, U_{s_Q(k^*)}) \approx_{\text{negl}_C} U_{4n_0 t + 1}$
 - $k \geq k^*$: $\text{Ext}_Q(\rho_0^{\otimes t}, U_{s_Q(k^*)})$ is far from $U_{4n_0 t + 1}$

Identifying γ : Flattening

- Consider the spectral decomposition:

$$\tau^{XQ^i*} = \sum_{x,k} p_{x,k} |x\rangle\langle x|^X \otimes |e_{x,k}\rangle\langle e_{x,k}|^{Q^i*}.$$

- Consider a function J
 - $J(p_{x,k}) = r$ if $p_{x,k} \in \left(\frac{1}{2^r}, \frac{1}{2^{r-1}}\right]$ for $r \in [\text{poly}(n)]$,
 - $J(p_{x,k}) = 0$ otherwise.
- Consider the extension:

$$\tau^{XQ^i* J} \stackrel{\text{def}}{=} \sum_{x,k} p_{x,k} |x\rangle\langle x|^X \otimes |e_{x,k}\rangle\langle e_{x,k}|^{Q^i*} \otimes |J(p_{x,k})\rangle\langle J(p_{x,k})|^J.$$

- Conditioned on any non-zero $J = j$: $\tau_j^{XQ^i*}$ is nearly "flat".

Identifying γ : Flattening

- Consider the conjugation

$$\theta^{XQ^{i^*}} = (\tau^{Q^{i^*}})^{\frac{-1}{2}} \tau^{XQ^{i^*}} (\tau^{Q^{i^*}})^{\frac{-1}{2}}.$$

- Add the J register according to the eigenvalues to get $\theta^{XQ^{i^*}J}$.
- Conjugate back

$$\tau^{XQ^{i^*}J} = (\tau^{Q^{i^*}})^{\frac{1}{2}} \theta^{XQ^{i^*}J} (\tau^{Q^{i^*}})^{\frac{1}{2}}.$$

- Conditioned on any non-zero $J = j$:

$$S_2(X|Q^{i^*})_{\tau_j^{XQ^{i^*}}} \approx S(X|Q^{i^*})_{\tau_j^{XQ^{i^*}}}.$$

- Need $S_2(X|Q^{i^*+1})_\gamma \approx S_2(X|Q^{i^*})_\gamma \approx S(X|Q^{i^*})_\gamma$.
- Identify γ as an appropriate substate of $\tau_j^{XQ^{i^*}}$ for some j .

EFI \implies sv-OWSG

sv-OWSG(1^λ)

1. Input: the security parameter λ .
2. Subroutine: EFI-pair generator (ρ_0, ρ_1) .
3. KEYGEN(1^λ) : $x \leftarrow U_n$ for $n = \lambda$.
4. STATEGEN($1^\lambda, x$) : $\phi_x = \rho_{x_1} \otimes \rho_{x_2} \cdots \otimes \rho_{x_n}$ where x_i represents the i^{th} -bit of x .
5. VER(x', ϕ_x)
 - let $\{\pi_0, \pi_1\}$ be an optimal distinguisher for ρ_0 and ρ_1 .
 - VER measures ϕ_x according to the projectors $\{\pi_{x'_1} \otimes \pi_{x'_2} \cdots \otimes \pi_{x'_n}, \mathbb{I} - \pi_{x'_1} \otimes \pi_{x'_2} \cdots \otimes \pi_{x'_n}\}$.
 - outputs \top if the first result is obtained and outputs \perp otherwise.

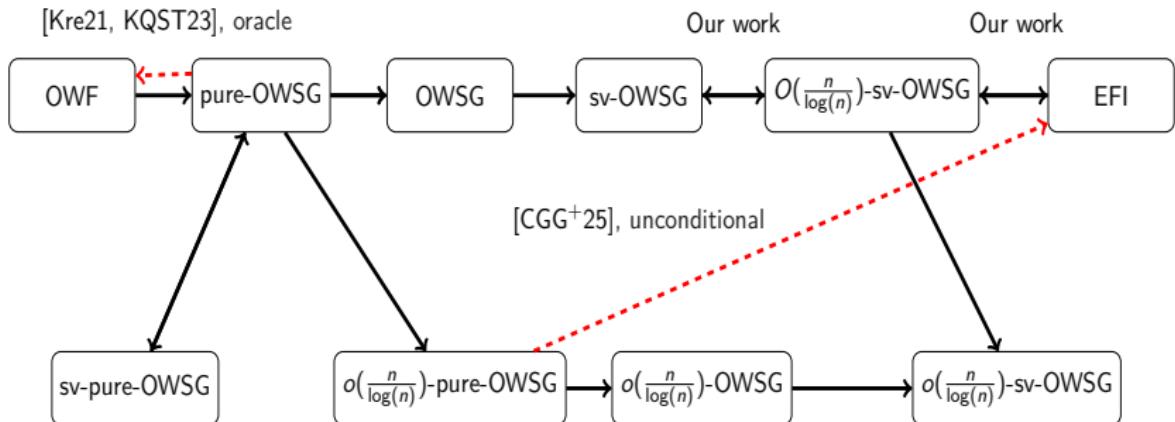
Proof idea: EFI \implies sv-OWSG

- $\|\rho_0 - \rho_1\|_1 \geq 1 - \text{negl}(\lambda)$ ensures
$$\Pr(\top \leftarrow \text{VER}(x, \phi_x)) \geq 1 - \text{negl}(\lambda).$$
- $\rho_0 \approx_{\text{negl}_C} \rho_1$ ensures non-invertibility by QPT adversary \mathcal{A}
 - \mathcal{A} must output $x' = x$
 - this can be used to distinguish ρ_0 and ρ_1 by inserting at a random i and calling \mathcal{A}

Summary

- Show $O\left(\frac{n}{\log(n)}\right)$ -copy sv-OWSGs are equivalent to EFI (and quantum commitments).
- Implies construction of commitments from a mixed-state output OWSG.
- Provide an alternative to the construction provided by [HILL99] to obtain a PRG from OWF.

Open Questions



- Can we get expanding 1-PRS (quantum equivalent of PRG) from OWSG?

References |

- Prabhanjan Ananth, Luwen Qian, and Henry Yuen.
Cryptography from Pseudorandom Quantum States.
In Yevgeniy Dodis and Thomas Shrimpton, editors, *Advances in Cryptology – CRYPTO 2022*, pages 208–236, Cham, 2022. Springer Nature Switzerland.
- James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma.
One-Way Functions Imply Secure Computation in a Quantum World.
In Tal Malkin and Chris Peikert, editors, *Advances in Cryptology – CRYPTO 2021*, pages 467–496, Cham, 2021. Springer International Publishing.
- Zvika Brakerski, Ran Canetti, and Luwen Qian.
On the Computational Hardness Needed for Quantum Cryptography.
In *14th Innovations in Theoretical Computer Science Conference (ITCS)*, 2023.
- Bruno Caivali, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, and Angelos Pelecanos.
On the Computational Hardness of Quantum One-Wayness.
Quantum, 9:1679, March 2025.
- Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan.
Oblivious Transfer Is in MiniQCrypt.
In Anne Canteaut and François-Xavier Standaert, editors, *Advances in Cryptology – EUROCRYPT 2021*, pages 531–561, Cham, 2021. Springer International Publishing.
- Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A Pseudorandom Generator from any One-way Function.
SIAM Journal on Computing, 1999.
- William Kretschmer, Luwen Qian, Makrand Sinha, and Avishay Tal.
Quantum Cryptography in Algorithmica.
In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, STOC, 2023.

References II

- William Kretschmer.
Quantum Pseudorandomness and Classical Complexity.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
- Dakshita Khurana and Kabir Tomer.
Commitments from Quantum One-Wayness.
ACM Symposium on Theory of Computing (STOC), 2024.
- Tomoyuki Morimae and Takashi Yamakawa.
Quantum commitments and signatures without one-way functions.
In *Advances in Cryptology – CRYPTO*, 2022.
- Jun Yan.
General Properties of Quantum Bit Commitments.
In *Advances in Cryptology – ASIACRYPT*, 2022.

Thanks!