
Commitments are equivalent to statistically
verifiable one-way state generators

Rahul Jain

Centre for Quantum Technologies
National University of Singapore

Joint work with Rishabh Batra (CQT, NUS)

FOCS 2024; TQC 2025; QCrypt 2024; ArXiv:2308.07340

Commitments

• One of the most fundamental primitives in cryptography.

• 2 parties: a sender and a receiver.

• Commit phase: the sender commits to some message m to
the receiver.

• Reveal phase: the sender reveals m to the receiver.

• We want:

1. Hiding: the receiver should not be able to learn m during the
commit phase.

2. Binding: the sender should not be able to reveal m′ 6= m

during the reveal phase.

One-Way Functions (OWF)

Classical one-way functions

A function f : {0, 1}n → {0, 1}m

• efficiently computable

• hard to invert by a (non-uniform) PPT (probabilistic
polynomial time) adversary

• OWF are equivalent to commitments, pseudorandom
generator (PRG), pseudorandom function (PRF)

Quantum-secure one-way functions

A function f : {0, 1}n → {0, 1}m

• efficiently computable

• hard to invert by a (non-uniform) QPT (quantum polynomial
time) adversary

Can we do anything more in the quantum world?

Quantum One-Way State Generator (OWSG) [MY22]

An m-copy one-way state generator (OWSG) is a set of algorithms
(here λ is the security parameter):

1. KeyGen(1λ)→ x : a PPT algorithm that outputs a classical
key x ∈ {0, 1}n.

2. StateGen(1λ, x)→ φx : a QPT algorithm that outputs a
(mixed) quantum state φx corresponding to the key x .

3. Ver(1λ, x ′, θ)→

⊥

/⊥ : a QPT algorithm that on input a
string x ′ and a state θ gives as output

⊥

or ⊥.

statistically verifiable (sv)-OWSG: Ver may not be efficient.

OWSG

Correctness

Pr[x ← KeyGen(1λ), φx ← StateGen(1λ, x),

⊥

← Ver(1λ, x , φx)]

≥ 1− negl(λ).

Security

For any (non-uniform) QPT adversary A,

Pr[x ← KeyGen(1λ), φx ← StateGen(1λ, x), x ′ ← A(1λ, φ⊗m
x),

⊥

← Ver(1λ, x ′, φx)] = negl(λ).

Note: Ver needs 1 additional copy of the state φx to verify.

Efficiently samplable, statistically Far, computationally
Indistinguishable pair of quantum states (EFI) [BCQ23]

EFI generator: a QPT algorithm StateGen(1λ, b)→ ρb

1. ρ0 ≈neglC ρ1.

2. ρ0 and ρ1 are statistically distinguishable with noticeable
advantage, that is, 1

2 ‖ρ0 − ρ1‖1 is a noticeable function in λ.

We call (ρ0, ρ1) an EFI pair.

Motivation

OWF pure-OWSG

EFI

OWSG sv-OWSG

Commitments

Oblivious Transfer/MPC
[Kre21, KQST23], oracle

[KT24]
[BCQ23, Yan22]

[BCQ23, GLSV21, BCKM21, AQY22]

• EFI-pairs imply oblivious transfer and secure-multi-party
computation.

• There is an oracle separation between pure-OWSG and
quantum-secure one-way functions. Hence, pure-OWSG are
potentially weaker objects than OWF [Kre21, KQST23].

What is the weakest OWSG from which we can get EFI?

Our results

OWF pure-OWSG

sv-pure-OWSG

OWSG sv-OWSG O(n
log(n))-sv-OWSG EFI

o(n
log(n))-sv-OWSGo(n

log(n))-pure-OWSG o(n
log(n))-OWSG

Our work Our work[Kre21, KQST23], oracle

[CGG+25], unconditional

HILL: OWF =⇒ EFI

• Assume f is a one-way permutation.

• Let g be a hardcore function of output length O(log n).

• EFI
• (P, Q) = (f (X)Rg(X , R), f (X)R ⊗ U|g(X ,R)|)

• since g is hardcore: P ≈neglC Q

• since f is injective: S(P) + O(log n) ≤ S(Q) and hence (P, Q)
are statistically far

• (P, Q) are efficiently samplable

HILL: OWF =⇒ EFI

• f is OWF.

• H is seed and H l(X) is l-bit output of a seeded extractor.

• Append HH l(X) : (X , H)→ f (X)HH l(X)
• extracts residual entropy in X given f (X)
• (X , H)→ f (X)HH l(X) (sort of) an injective function
• requires l ≈ S(X |f (X)) (≈ means up to additive O(log n))
• need to ensure (X , H)→ f (X)HH l(X) is OWF
• need f (X)HH l(X) ≈neglC f (X)⊗ H ⊗ Ul

• forces l ≈ S2(X |f (X)) (collision entropy)
• X conditioned on f (X) is flat: S(X |f (X)) = S2(X |f (X))
• l depended on f (X); finding l from f (X) not efficient
• handled this via intricate, elaborate arguments

HILL: OWF =⇒ EFI

• EFI
• (P, Q) = (f (X)HHℓ(X)Rg(X , R), f (X)HHℓ(X)R ⊗ U|g(X ,R)|)
• since g is hardcore: P ≈neglC Q
• injectivity ensures P and Q are statistically far
• (P, Q) are efficiently samplable

• PRG
• (X⊗t , H⊗t , R⊗t , S1, S2)→ Ext(X⊗t , S2) Ext(P⊗t , S1)
• Ext: seeded extractor
• determining output lengths of the extractors is not efficient
• handled via stretching the output of PRG

Quantum case issues

• cannot condition on a quantum state

• multiple copies of f (x) to adversary have to be handled

• do not know how to stretch the output

Imbalanced EFI [KT24]

An s∗-imbalanced EFI: a QPT algorithm EFIs(1
λ, b)→ ρb(s) (s

is advice string)

1. For all s ≤ s∗: ρ0(s) ≈neglC ρ1(s) (computational
indistinguishability).

2. For all s ≥ s∗: ρ0(s) and ρ1(s) are statistically distinguishable
with noticeable advantage, that is 1

2 ‖ρ0(s)− ρ1(s)‖1 is a
noticeable function in λ.

• We show a construction of imbalanced-EFI from sv-OWSG.

• We use [KT24] for imbalanced-EFI =⇒ EFI.

Our construction: Imbalanced-EFI from sv-OWSG

EFIk(1λ, b)

1. Input: security parameter λ and a bit b.

2. Subroutine: an m-copy sv-OWSG with key-length n that generates
a one-way state τXQm

.

3. For all i ∈ [m], l ∈ [n] (g is a quantum hardcore function)

τ0(i , l)
def
= Q iHH l(X)Rg(X , R)τ ,

ρ0
def
=

m
∑

i=1

n
∑

l=1

1

mn
|i , l〉〈i , l | ⊗ τ0(i , l).

4. n0: number of qubits in ρ0, t = poly(n, λ),

sQ(k) = 4n0t − k + O(log(t)).

5. If b = 0, output ExtQ(ρ⊗t
0 , UsQ(k)), where ExtQ : quantum extractor.

6. If b = 1, output U4n0t+1.

Proof idea
• Consider

τ0(i , l) = Q iHH l(X)Rg(X , R)τ ,

τ1(i , l) = Q iHH l(X)Rτ ⊗ U|g(X ,R)|.

• To get an EFI we want:

τ0(i , l) ≈neglC τ1(i , l),

S(τ1(i , l))− S(τ0(i , l)) ≥
1

poly(n)
.

• To ensure injectivity: l ≈ S(X |Q i)τ .

• To ensure (X , H)→ Q iHH l(X)τ is OWSG: l ≈ S2(X |Q i+1)τ

S2(X |Q i)τ
def
= − log

(

Tr
(

(τQi

)
−1
2 τXQi

(τQi

)
−1
2 τXQi

))

• Therefore need,

l ≈ S(X |Q i)τ ≈ S2(X |Q i+1)τ .

Proof idea

• Identify an i∗ ∈ [m]

S(X |Qi∗

)τ ≈ S(X |Qi∗+1)τ

• Key technical contribution: identify a good substate γ of τ
• q · γ + (1− q) · θ = τ

• q = 1
poly(n)

• li∗ ≈ S2(X |Q i∗+1)γ ≈ S2(X |Q i∗

)γ ≈ S(X |Q i∗

)γ

• Consider
• σ0

def
= Q i∗

HH li∗ (X)Rg(X , R)γ

• σ1
def
= Q i∗

HH li∗ (X)Rγ ⊗ U|g(X ,R)|

• since li∗ ≈ S(X |Q i∗

)γ : S(σ1)− S(σ0) ≥ O(log n)
• since li∗ ≈ S2(X |Q i∗+1)γ : σ1 ≈neglC σ0

Proof idea

• Consider

τ0(i∗, li∗)
def
= Qi∗

HH li∗ (X)Rg(X , R)τ

= q · σ0 + (1− q) · Qi∗

HH li∗ (X)Rg(X , R)θ

τ̃1(i∗, li∗)
def
= q · σ1 + (1− q) · Qi∗

HH li∗ (X)Rg(X , R)θ

• Since q ≥ 1
poly(n) : S(τ̃1(i∗, li∗))− S(τ0(i∗, li∗)) ≥ 1

poly(n)

• Since σ1 ≈neglC σ0 : τ̃1(i∗, li∗) ≈neglC τ0(i∗, li∗)

Proof idea

• Since i∗ and li∗ cannot be efficiently determined, take a
convex mixture:

ρ0
def
=

m
∑

i=1

n
∑

l=1

1

mn
|i , l〉〈i , l | ⊗ τ0(i , l)

ρ1
def
=

m
∑

i=1

n
∑

l=1

1(i 6= i∗ or l 6= li∗) ·
1

mn
|i , l〉〈i , l | ⊗ τ0(i , l)

+
1

mn
|i∗, li∗〉〈i∗, li∗ | ⊗ τ̃1(i∗, li∗)

Proof idea

• Since S(τ̃1(i∗, li∗))− S(τ0(i∗, li∗)) ≥ 1
poly(n)

S(ρ1)− S(ρ0) ≥
1

poly(n)

• Since τ̃1(i∗, li∗) ≈neglC τ0(i∗, li∗) : ρ1 ≈neglC ρ0

• Take t (∈ poly(n)) copies ρ⊗t
0 , ρ⊗t

1
• S0(ρ⊗t

0)→ t · S(ρ0) ; S1(ρ⊗t
1)→ t · S(ρ1)

• S1(ρ⊗t
1) >> S0(ρ⊗t

0)
• ρ⊗t

1 ≈neglC ρ⊗t
0

• ExtQ removes non-uniformity in ρ⊗t
1 (k∗ def

= S1(ρ⊗t
1))

• k ≤ k∗ : ExtQ(ρ⊗t
0 , UsQ(k∗)) ≈neglC ExtQ(ρ⊗t

1 , UsQ(k∗)) ≈neglC
U4n0t+1

• k ≥ k∗ : ExtQ(ρ⊗t
0 , UsQ(k∗)) is far from U4n0t+1

Identifying γ: Flattening

• Consider the spectral decomposition:

τXQi∗

=
∑

x ,k

px ,k |x〉〈x |
X ⊗ |ex ,k〉〈ex ,k |

Qi∗

.

• Consider a function J
• J(px ,k) = r if px ,k ∈

(

1
2r , 1

2r−1

]

for r ∈ [poly(n)],

• J(px ,k) = 0 otherwise.

• Consider the extension:

τXQi∗ J def
=

∑

x ,k

px ,k |x〉〈x |
X⊗|ex ,k〉〈ex ,k |

Qi∗

⊗|J(px ,k)〉〈J(px ,k)|J .

• Conditioned on any non-zero J = j : τXQi∗

j is nearly "flat".

Identifying γ: Flattening

• Consider the conjugation

θXQi∗

= (τQi∗

)
−1
2 τXQi∗

(τQi∗

)
−1
2 .

• Add the J register according to the eigenvalues to get θXQi∗ J .

• Conjugate back

τXQi∗ J = (τQi∗

)
1
2 θXQi∗ J(τQi∗

)
1
2 .

• Conditioned on any non-zero J = j :

S2(X |Qi∗

)
τXQi∗

j

≈ S(X |Qi∗

)
τXQi∗

j

.

• Need S2(X |Qi∗+1)γ ≈ S2(X |Qi∗

)γ ≈ S(X |Qi∗

)γ .

• Identify γ as an appropriate substate of τXQi∗

j for some j .

EFI =⇒ sv-OWSG

sv-OWSG(1λ)

1. Input: the security parameter λ.

2. Subroutine: EFI-pair generator (ρ0, ρ1).

3. KeyGen(1λ) : x ← Un for n = λ.

4. StateGen(1λ, x) : φx = ρx1 ⊗ ρx2 · · · ⊗ ρxn where xi

represents the i th-bit of x .

5. Ver(x ′, φx)
• let {π0, π1} be an optimal distinguisher for ρ0 and ρ1.
• Ver measures φx according to the projectors
{πx ′

1
⊗ πx ′

2
· · · ⊗ πx ′

n
, I− πx ′

1
⊗ πx ′

2
· · · ⊗ πx ′

n
}.

• outputs

⊥

if the first result is obtained and outputs ⊥
otherwise.

Proof idea: EFI =⇒ sv-OWSG

• ‖ρ0 − ρ1‖1 ≥ 1− negl(λ) ensures

Pr(

⊥

← Ver(x , φx)) ≥ 1− negl(λ).

• ρ0 ≈neglC ρ1 ensures non-invertibility by QPT adversary A
• A must output x ′ = x

• this can be used to distinguish ρ0 and ρ1 by inserting at a
random i and calling A

Summary

• Show O
(

n
log(n)

)

-copy sv-OWSGs are equivalent to EFI (and

quantum commitments).

• Implies construction of commitments from a mixed-state
output OWSG.

• Provide an alternative to the construction provided
by [HILL99] to obtain a PRG from OWF.

Open Questions

OWF pure-OWSG

sv-pure-OWSG

OWSG sv-OWSG O(n
log(n))-sv-OWSG EFI

o(n
log(n))-sv-OWSGo(n

log(n))-pure-OWSG o(n
log(n))-OWSG

Our work Our work[Kre21, KQST23], oracle

[CGG+25], unconditional

• Can we get expanding 1-PRS (quantum equivalent of PRG)
from OWSG?

References I

Prabhanjan Ananth, Luowen Qian, and Henry Yuen.

Cryptography from Pseudorandom Quantum States.
In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages
208–236, Cham, 2022. Springer Nature Switzerland.

James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma.

One-Way Functions Imply Secure Computation in a Quantum World.
In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages 467–496, Cham,
2021. Springer International Publishing.

Zvika Brakerski, Ran Canetti, and Luowen Qian.

On the Computational Hardness Needed for Quantum Cryptography.
In 14th Innovations in Theoretical Computer Science Conference (ITCS), 2023.

Bruno Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, and Angelos Pelecanos.

On the Computational Hardness of Quantum One-Wayness.
Quantum, 9:1679, March 2025.

Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan.

Oblivious Transfer Is in MiniQCrypt.
In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
pages 531–561, Cham, 2021. Springer International Publishing.

Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.

A Pseudorandom Generator from any One-way Function.
SIAM Journal on Computing, 1999.

William Kretschmer, Luowen Qian, Makrand Sinha, and Avishay Tal.

Quantum Cryptography in Algorithmica.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC, 2023.

References II

William Kretschmer.

Quantum Pseudorandomness and Classical Complexity.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

Dakshita Khurana and Kabir Tomer.

Commitments from Quantum One-Wayness.
ACM Symposium on Theory of Computing (STOC), 2024.

Tomoyuki Morimae and Takashi Yamakawa.

Quantum commitments and signatures without one-way functions.
In Advances in Cryptology – CRYPTO, 2022.

Jun Yan.

General Properties of Quantum Bit Commitments.
In Advances in Cryptology – ASIACRYPT, 2022.

Thanks!

