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Commitments

• One of the most fundamental primitives in cryptography.

• 2 parties: a sender and a receiver.

• Commit phase: the sender commits to some message m to
the receiver.

• Reveal phase: the sender reveals m to the receiver.

• We want:

1. Hiding: the receiver should not be able to learn m during the
commit phase.

2. Binding: the sender should not be able to reveal m′ 6= m

during the reveal phase.



One-Way Functions (OWF)

Classical one-way functions

A function f : {0, 1}n → {0, 1}m

• efficiently computable

• hard to invert by a (non-uniform) PPT (probabilistic
polynomial time) adversary

• OWF are equivalent to commitments, pseudorandom
generator (PRG), pseudorandom function (PRF)

Quantum-secure one-way functions

A function f : {0, 1}n → {0, 1}m

• efficiently computable

• hard to invert by a (non-uniform) QPT (quantum polynomial
time) adversary

Can we do anything more in the quantum world?



Quantum One-Way State Generator (OWSG) [MY22]

An m-copy one-way state generator (OWSG) is a set of algorithms
(here λ is the security parameter):

1. KeyGen(1λ)→ x : a PPT algorithm that outputs a classical
key x ∈ {0, 1}n.

2. StateGen(1λ, x)→ φx : a QPT algorithm that outputs a
(mixed) quantum state φx corresponding to the key x .

3. Ver(1λ, x ′, θ)→

⊥

/⊥ : a QPT algorithm that on input a
string x ′ and a state θ gives as output

⊥

or ⊥.

statistically verifiable (sv)-OWSG: Ver may not be efficient.



OWSG

Correctness

Pr[x ← KeyGen(1λ), φx ← StateGen(1λ, x),

⊥

← Ver(1λ, x , φx )]

≥ 1− negl(λ).

Security

For any (non-uniform) QPT adversary A,

Pr[x ← KeyGen(1λ), φx ← StateGen(1λ, x), x ′ ← A(1λ, φ⊗m
x ),

⊥

← Ver(1λ, x ′, φx )] = negl(λ).

Note: Ver needs 1 additional copy of the state φx to verify.



Efficiently samplable, statistically Far, computationally
Indistinguishable pair of quantum states (EFI) [BCQ23]

EFI generator: a QPT algorithm StateGen(1λ, b)→ ρb

1. ρ0 ≈neglC ρ1.

2. ρ0 and ρ1 are statistically distinguishable with noticeable
advantage, that is, 1

2 ‖ρ0 − ρ1‖1 is a noticeable function in λ.

We call (ρ0, ρ1) an EFI pair.



Motivation

OWF pure-OWSG

EFI

OWSG sv-OWSG

Commitments

Oblivious Transfer/MPC
[Kre21, KQST23], oracle

[KT24]
[BCQ23, Yan22]

[BCQ23, GLSV21, BCKM21, AQY22]

• EFI-pairs imply oblivious transfer and secure-multi-party
computation.

• There is an oracle separation between pure-OWSG and
quantum-secure one-way functions. Hence, pure-OWSG are
potentially weaker objects than OWF [Kre21, KQST23].

What is the weakest OWSG from which we can get EFI?



Our results

OWF pure-OWSG

sv-pure-OWSG

OWSG sv-OWSG O( n
log(n))-sv-OWSG EFI

o( n
log(n))-sv-OWSGo( n

log(n))-pure-OWSG o( n
log(n))-OWSG

Our work Our work[Kre21, KQST23], oracle

[CGG+25], unconditional



HILL: OWF =⇒ EFI

• Assume f is a one-way permutation.

• Let g be a hardcore function of output length O(log n).

• EFI
• (P, Q) = (f (X )Rg(X , R), f (X )R ⊗ U|g(X ,R)|)

• since g is hardcore: P ≈neglC Q

• since f is injective: S(P) + O(log n) ≤ S(Q) and hence (P, Q)
are statistically far

• (P, Q) are efficiently samplable



HILL: OWF =⇒ EFI

• f is OWF.

• H is seed and H l(X ) is l-bit output of a seeded extractor.

• Append HH l(X ) : (X , H)→ f (X )HH l(X )
• extracts residual entropy in X given f (X )
• (X , H)→ f (X )HH l(X ) (sort of) an injective function
• requires l ≈ S(X |f (X )) (≈ means up to additive O(log n))
• need to ensure (X , H)→ f (X )HH l(X ) is OWF
• need f (X )HH l(X ) ≈neglC f (X )⊗ H ⊗ Ul

• forces l ≈ S2(X |f (X )) (collision entropy)
• X conditioned on f (X ) is flat: S(X |f (X )) = S2(X |f (X ))
• l depended on f (X ); finding l from f (X ) not efficient
• handled this via intricate, elaborate arguments



HILL: OWF =⇒ EFI

• EFI
• (P, Q) = (f (X )HHℓ(X )Rg(X , R), f (X )HHℓ(X )R ⊗ U|g(X ,R)|)
• since g is hardcore: P ≈neglC Q
• injectivity ensures P and Q are statistically far
• (P, Q) are efficiently samplable

• PRG
• (X⊗t , H⊗t , R⊗t , S1, S2)→ Ext(X⊗t , S2) Ext(P⊗t , S1)
• Ext: seeded extractor
• determining output lengths of the extractors is not efficient
• handled via stretching the output of PRG

Quantum case issues

• cannot condition on a quantum state

• multiple copies of f (x) to adversary have to be handled

• do not know how to stretch the output



Imbalanced EFI [KT24]

An s∗-imbalanced EFI: a QPT algorithm EFIs(1
λ, b)→ ρb(s) (s

is advice string)

1. For all s ≤ s∗: ρ0(s) ≈neglC ρ1(s) (computational
indistinguishability).

2. For all s ≥ s∗: ρ0(s) and ρ1(s) are statistically distinguishable
with noticeable advantage, that is 1

2 ‖ρ0(s)− ρ1(s)‖1 is a
noticeable function in λ.

• We show a construction of imbalanced-EFI from sv-OWSG.

• We use [KT24] for imbalanced-EFI =⇒ EFI.



Our construction: Imbalanced-EFI from sv-OWSG

EFIk(1λ, b)

1. Input: security parameter λ and a bit b.

2. Subroutine: an m-copy sv-OWSG with key-length n that generates
a one-way state τXQm

.

3. For all i ∈ [m], l ∈ [n] (g is a quantum hardcore function)

τ0(i , l)
def
= Q iHH l(X )Rg(X , R)τ ,

ρ0
def
=

m
∑

i=1

n
∑

l=1

1

mn
|i , l〉〈i , l | ⊗ τ0(i , l).

4. n0: number of qubits in ρ0, t = poly(n, λ),

sQ(k) = 4n0t − k + O(log(t)).

5. If b = 0, output ExtQ(ρ⊗t
0 , UsQ(k)), where ExtQ : quantum extractor.

6. If b = 1, output U4n0t+1.



Proof idea
• Consider

τ0(i , l) = Q iHH l(X )Rg(X , R)τ ,

τ1(i , l) = Q iHH l(X )Rτ ⊗ U|g(X ,R)|.

• To get an EFI we want:

τ0(i , l) ≈neglC τ1(i , l),

S(τ1(i , l))− S(τ0(i , l)) ≥
1

poly(n)
.

• To ensure injectivity: l ≈ S(X |Q i)τ .

• To ensure (X , H)→ Q iHH l(X )τ is OWSG: l ≈ S2(X |Q i+1)τ

S2(X |Q i)τ
def
= − log

(

Tr
(

(τQi

)
−1
2 τXQi

(τQi

)
−1
2 τXQi

))

• Therefore need,

l ≈ S(X |Q i)τ ≈ S2(X |Q i+1)τ .



Proof idea

• Identify an i∗ ∈ [m]

S(X |Qi∗

)τ ≈ S(X |Qi∗+1)τ

• Key technical contribution: identify a good substate γ of τ
• q · γ + (1− q) · θ = τ

• q = 1
poly(n)

• li∗ ≈ S2(X |Q i∗+1)γ ≈ S2(X |Q i∗

)γ ≈ S(X |Q i∗

)γ

• Consider
• σ0

def
= Q i∗

HH li∗ (X )Rg(X , R)γ

• σ1
def
= Q i∗

HH li∗ (X )Rγ ⊗ U|g(X ,R)|

• since li∗ ≈ S(X |Q i∗

)γ : S(σ1)− S(σ0) ≥ O(log n)
• since li∗ ≈ S2(X |Q i∗+1)γ : σ1 ≈neglC σ0



Proof idea

• Consider

τ0(i∗, li∗)
def
= Qi∗

HH li∗ (X )Rg(X , R)τ

= q · σ0 + (1− q) · Qi∗

HH li∗ (X )Rg(X , R)θ

τ̃1(i∗, li∗)
def
= q · σ1 + (1− q) · Qi∗

HH li∗ (X )Rg(X , R)θ

• Since q ≥ 1
poly(n) : S(τ̃1(i∗, li∗))− S(τ0(i∗, li∗)) ≥ 1

poly(n)

• Since σ1 ≈neglC σ0 : τ̃1(i∗, li∗) ≈neglC τ0(i∗, li∗)



Proof idea

• Since i∗ and li∗ cannot be efficiently determined, take a
convex mixture:

ρ0
def
=

m
∑

i=1

n
∑

l=1

1

mn
|i , l〉〈i , l | ⊗ τ0(i , l)

ρ1
def
=

m
∑

i=1

n
∑

l=1

1(i 6= i∗ or l 6= li∗) ·
1

mn
|i , l〉〈i , l | ⊗ τ0(i , l)

+
1

mn
|i∗, li∗〉〈i∗, li∗ | ⊗ τ̃1(i∗, li∗)



Proof idea

• Since S(τ̃1(i∗, li∗))− S(τ0(i∗, li∗)) ≥ 1
poly(n)

S(ρ1)− S(ρ0) ≥
1

poly(n)

• Since τ̃1(i∗, li∗) ≈neglC τ0(i∗, li∗) : ρ1 ≈neglC ρ0

• Take t (∈ poly(n)) copies ρ⊗t
0 , ρ⊗t

1
• S0(ρ⊗t

0 )→ t · S(ρ0) ; S1(ρ⊗t
1 )→ t · S(ρ1)

• S1(ρ⊗t
1 ) >> S0(ρ⊗t

0 )
• ρ⊗t

1 ≈neglC ρ⊗t
0

• ExtQ removes non-uniformity in ρ⊗t
1 (k∗ def

= S1(ρ⊗t
1 ))

• k ≤ k∗ : ExtQ(ρ⊗t
0 , UsQ(k∗)) ≈neglC ExtQ(ρ⊗t

1 , UsQ(k∗)) ≈neglC
U4n0t+1

• k ≥ k∗ : ExtQ(ρ⊗t
0 , UsQ(k∗)) is far from U4n0t+1



Identifying γ: Flattening

• Consider the spectral decomposition:

τXQi∗

=
∑

x ,k

px ,k |x〉〈x |
X ⊗ |ex ,k〉〈ex ,k |

Qi∗

.

• Consider a function J
• J(px ,k) = r if px ,k ∈

(

1
2r , 1

2r−1

]

for r ∈ [poly(n)],

• J(px ,k) = 0 otherwise.

• Consider the extension:

τXQi∗ J def
=

∑

x ,k

px ,k |x〉〈x |
X⊗|ex ,k〉〈ex ,k |

Qi∗

⊗|J(px ,k)〉〈J(px ,k)|J .

• Conditioned on any non-zero J = j : τXQi∗

j is nearly "flat".



Identifying γ: Flattening

• Consider the conjugation

θXQi∗

= (τQi∗

)
−1
2 τXQi∗

(τQi∗

)
−1
2 .

• Add the J register according to the eigenvalues to get θXQi∗ J .

• Conjugate back

τXQi∗ J = (τQi∗

)
1
2 θXQi∗ J(τQi∗

)
1
2 .

• Conditioned on any non-zero J = j :

S2(X |Qi∗

)
τXQi∗

j

≈ S(X |Qi∗

)
τXQi∗

j

.

• Need S2(X |Qi∗+1)γ ≈ S2(X |Qi∗

)γ ≈ S(X |Qi∗

)γ .

• Identify γ as an appropriate substate of τXQi∗

j for some j .



EFI =⇒ sv-OWSG

sv-OWSG(1λ)

1. Input: the security parameter λ.

2. Subroutine: EFI-pair generator (ρ0, ρ1).

3. KeyGen(1λ) : x ← Un for n = λ.

4. StateGen(1λ, x) : φx = ρx1 ⊗ ρx2 · · · ⊗ ρxn where xi

represents the i th-bit of x .

5. Ver(x ′, φx )
• let {π0, π1} be an optimal distinguisher for ρ0 and ρ1.
• Ver measures φx according to the projectors
{πx ′

1
⊗ πx ′

2
· · · ⊗ πx ′

n
, I− πx ′

1
⊗ πx ′

2
· · · ⊗ πx ′

n
}.

• outputs

⊥

if the first result is obtained and outputs ⊥
otherwise.



Proof idea: EFI =⇒ sv-OWSG

• ‖ρ0 − ρ1‖1 ≥ 1− negl(λ) ensures

Pr(

⊥

← Ver(x , φx )) ≥ 1− negl(λ).

• ρ0 ≈neglC ρ1 ensures non-invertibility by QPT adversary A
• A must output x ′ = x

• this can be used to distinguish ρ0 and ρ1 by inserting at a
random i and calling A



Summary

• Show O
(

n
log(n)

)

-copy sv-OWSGs are equivalent to EFI (and

quantum commitments).

• Implies construction of commitments from a mixed-state
output OWSG.

• Provide an alternative to the construction provided
by [HILL99] to obtain a PRG from OWF.



Open Questions

OWF pure-OWSG

sv-pure-OWSG

OWSG sv-OWSG O( n
log(n))-sv-OWSG EFI

o( n
log(n))-sv-OWSGo( n

log(n))-pure-OWSG o( n
log(n))-OWSG

Our work Our work[Kre21, KQST23], oracle

[CGG+25], unconditional

• Can we get expanding 1-PRS (quantum equivalent of PRG)
from OWSG?
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