
SNARGs for NP &
Non-Signaling PCPs, Revisited

Surya Mathialagan 
MIT NTT Research→

Lali Devadas 
MIT

Sam Hopkins 
MIT

Yael Kalai 
MIT

Pravesh Kothari 
Princeton

Alex Lombardi 
Princeton

PROVEN

PROVEN DISPROVEN

PROVEN DISPROVEN

+ COOKIES

PROVEN DISPROVEN

+ COOKIES

Low-Norm
Nullstellensatz

Conjecture

TLDR

• Theorem. We construct SNARGs for NP assuming:

• Hardness of LWE, Bilinear Maps or DDH,

• A mathematical conjecture above multivariate polynomials of reals.

• This talk: I will talk about this fascinating connection between SNARGs
and PCPs [BMW98, KRR14, BHK17, BKKSW18]

• Giving you an open problem to solve :)

Delegation of Computation

Delegation of Computation

Delegation of Computation

Delegation of Computation

“ ”M(x) = 1

Delegation of Computation

“ ”M(x) = 1

π

Delegation of Computation

Can the cloud attach a small, efficiently verifiable proof
that he did the computation correctly?

“ ”M(x) = 1

π

Delegation of Computation

Can the cloud attach a small, efficiently verifiable proof
that he did the computation correctly?

“ ”M(x) = 1

π

This work: Non-deterministic M

Succinct Non-Interactive Arguments for NP

Succinct Non-Interactive Arguments for NP

𝒫

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

𝒫

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

𝒫 𝒱

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

w

𝒫 𝒱

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

w

π𝒫 𝒱

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

w

π

• Succinctness: .|π | ≪ |w |

𝒫 𝒱

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

w

π

Common reference string

• Succinctness: .|π | ≪ |w |

𝒫 𝒱

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

w

π

Common reference string

• Succinctness: .|π | ≪ |w |
• Correctness: If is honestly generated, accepts.π 𝒱(𝖼𝗋𝗌, x, π)

𝒫 𝒱

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

π

Common reference string

• Succinctness: .|π | ≪ |w |
• Correctness: If is honestly generated, accepts.π 𝒱(𝖼𝗋𝗌, x, π)

𝒱𝒜

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

π

Common reference string

• Succinctness: .|π | ≪ |w |
• Correctness: If is honestly generated, accepts.π 𝒱(𝖼𝗋𝗌, x, π)
• (Non-Adaptive) Soundness: If , difficult for ppt to come up with

accepting proof.
x ∉ ℒ 𝒜

𝒱𝒜

Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

π

Common reference string

• Succinctness: .|π | ≪ |w |
• Correctness: If is honestly generated, accepts.π 𝒱(𝖼𝗋𝗌, x, π)
• (Non-Adaptive) Soundness: If , difficult for ppt to come up with

accepting proof.
x ∉ ℒ 𝒜

Pr
𝖼𝗋𝗌

[π ← 𝒜(𝖼𝗋𝗌) ∧ 𝒱(𝖼𝗋𝗌, x, π) = 1] ≤ 2−λ

𝒱𝒜

SNARGs for NP?

6

SNARGs for NP?

Micali’00, IKO’07, GKR’08, IKOS’09, Groth’10, SBW’11, SMBW’12, Lipmaa’12,
CMT’12, DFH’12, SVPBBW’12, TRMP’12, GGPR’13, BCIOP’13, BCCT’13, Thaler’13,

BCGTV’13, PHGR’13, BSCGT’13, BCGGMTV’14, BCCGP’16, Groth’16, GMO’16,
GLRT’17, AHIV’17, BSBCGGHPRST’17, WJBSTWW’17, BBBPWM’18,

BCGMMW’18, BSBHR’18, WTSTW’18, WZCPS’18, GMNO’18, FKL’18, BBCGI’19,
BBHR’19, BCRSVW’19, BSCRSVW’19, CFQ19, GWC’19, KPV’19, KPY’19,

MBKM’19, Nitulescu’19, XZZPS’19, Gabizon’19, BBS’20, BSCIKS’20, BFHVXZ’20,
COS’20, CHMMVW’20, KZ’20, KPPS’20, SGKS’20, SL’20, Setty’20, ZXZS’20,

BMMTV’21, GLSTW’21, GMN21, GPR’21, Sta’21, ZLWZSXZ’21, Bay’22, CBBZ’22,
XZCZZJBS’22, XZS’22, …

6

SNARGs for NP?

Micali’00, IKO’07, GKR’08, IKOS’09, Groth’10, SBW’11, SMBW’12, Lipmaa’12,
CMT’12, DFH’12, SVPBBW’12, TRMP’12, GGPR’13, BCIOP’13, BCCT’13, Thaler’13,

BCGTV’13, PHGR’13, BSCGT’13, BCGGMTV’14, BCCGP’16, Groth’16, GMO’16,
GLRT’17, AHIV’17, BSBCGGHPRST’17, WJBSTWW’17, BBBPWM’18,

BCGMMW’18, BSBHR’18, WTSTW’18, WZCPS’18, GMNO’18, FKL’18, BBCGI’19,
BBHR’19, BCRSVW’19, BSCRSVW’19, CFQ19, GWC’19, KPV’19, KPY’19,

MBKM’19, Nitulescu’19, XZZPS’19, Gabizon’19, BBS’20, BSCIKS’20, BFHVXZ’20,
COS’20, CHMMVW’20, KZ’20, KPPS’20, SGKS’20, SL’20, Setty’20, ZXZS’20,

BMMTV’21, GLSTW’21, GMN21, GPR’21, Sta’21, ZLWZSXZ’21, Bay’22, CBBZ’22,
XZCZZJBS’22, XZS’22, …

Random Oracle/Knowledge Assumptions

6

SNARGs for NP in Standard Model?

SNARGs for NP in Standard Model?

SNARGs for NP in Standard Model?
SNARGs for NP

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

Obfustopia
Not known from standard,  

post-quantum assumptions

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

Obfustopia
Not known from standard,  

post-quantum assumptions

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.

Obfustopia
Not known from standard,  

post-quantum assumptions

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch- [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Obfustopia
Not known from standard,  

post-quantum assumptions

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch- [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Monotone-Policy Batch-NP [KRR14, BHK17, CJJ21, KVZ21]

Obfustopia
Not known from standard,  

post-quantum assumptions

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch- [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Monotone-Policy Batch-NP [KRR14, BHK17, CJJ21, KVZ21]

Natural subclasses of [JKLV24, JKLM25]𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

Obfustopia
Not known from standard,  

post-quantum assumptions

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch- [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Monotone-Policy Batch-NP [KRR14, BHK17, CJJ21, KVZ21]

Natural subclasses of [JKLV24, JKLM25]𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

Obfustopia
Not known from standard,  

post-quantum assumptions

Subclass of NP

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch- [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Monotone-Policy Batch-NP [KRR14, BHK17, CJJ21, KVZ21]

Natural subclasses of [JKLV24, JKLM25]𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

?

Obfustopia
Not known from standard,  

post-quantum assumptions

Subclass of NP

SNARGs for NP in Standard Model?
SNARGs for NP

From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch- [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Monotone-Policy Batch-NP [KRR14, BHK17, CJJ21, KVZ21]

Natural subclasses of [JKLV24, JKLM25]𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

?

Obfustopia
Not known from standard,  

post-quantum assumptions

Subclass of NP

Can we build SNARGs from  
LWE/Bilinear Maps/etc?

How to construct SNARGs?

How to construct SNARGs?

How to construct SNARGs?

Crypto

How to construct SNARGs?

PCP Crypto

Probabilistically Checkable Proofs

Probabilistically Checkable Proofs
PCP string Π

Probabilistically Checkable Proofs
PCP string Π

Probabilistically Checkable Proofs
PCP string Π

Probabilistically Checkable Proofs

q1
q2 qk

…

PCP string Π

Probabilistically Checkable Proofs

a1 a2 ak−1 ak

q1
q2 qk

…

PCP string Π

Probabilistically Checkable Proofs

• Locality: k ≪ |w |
a1 a2 ak−1 ak

q1
q2 qk

…

PCP string Π

Probabilistically Checkable Proofs

• Locality: k ≪ |w |

• Correctness: For honest ,
 always accepts.

Π
V

a1 a2 ak−1 ak

q1
q2 qk

…

PCP string Π

Probabilistically Checkable Proofs

• Locality: k ≪ |w |

• Correctness: For honest ,
 always accepts.

Π
V

• Soundness: For ,x ∉ ℒ
Pr
Q

[VΠ(x, Q) = 1] ≤ 1/𝗉𝗈𝗅𝗒(𝗇)

a1 a2 ak−1 ak

q1
q2 qk

…

PCP string Π

Probabilistically Checkable Proofs

• Locality: k ≪ |w |

• Correctness: For honest ,
 always accepts.

Π
V

• Soundness: For ,x ∉ ℒ
Pr
Q

[VΠ(x, Q) = 1] ≤ 1/𝗉𝗈𝗅𝗒(𝗇)

a1 a2 ak−1 ak

q1
q2 qk

…

PCP string Π

Theorem [ALMSS ’92]. There exists a PCP  
of length and locality 𝗉𝗈𝗅𝗒(n) 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n)

• Locality: k ≪ |w |

• Correctness: For honest ,
 always accepts.

Π
V

• Soundness: For ,x ∉ ℒ
Pr
Q

[VΠ(x, Q) = 1] ≤ 1/𝗉𝗈𝗅𝗒(𝗇)

a1 a2 ak−1 ak

q1
q2 qk

…

PCP to SNARG?
PCP string Π

Theorem [ALMSS ’92]. There exists a PCP  
of length and locality 𝗉𝗈𝗅𝗒(n) 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n)

PCP to SNARG?
𝒫 𝒱

PCP to SNARG?

q1 q2 qk…
𝒫 𝒱

PCP to SNARG?

q1 q2 qk…𝖼𝗋𝗌 =
𝒫 𝒱

PCP to SNARG?

q1 q2 qk…𝖼𝗋𝗌 =
𝒫 𝒱

a1 a2 ak

PCP to SNARG?

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒫 𝒱

a1 a2 ak

PCP to SNARG?

• Succinct and Correct

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒫 𝒱

a1 a2 ak

PCP to SNARG?

• Succinct and Correct

• Not sound

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒫 𝒱

a1 a2 ak

PCP to SNARG?

• Succinct and Correct

• Not sound

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒱𝒜

a1 a2 ak

PCP to SNARG?

• Succinct and Correct

• Not sound

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒱𝒜

PCP to SNARG?

• Succinct and Correct

• Not sound

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒱𝒜

Not committed to any string!

PCP to SNARG?

• Succinct and Correct

• Not sound

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒱𝒜

Not committed to any string!
Can choose after seeing ai 𝒬

PCP to SNARG?

• Succinct and Correct

• Not sound

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒱𝒜

Not committed to any string!
Can choose after seeing ai 𝒬

Need some cryptography in this
compiler to restrict !𝒜

PCP to SNARG?

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

PCP + Commitments

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

PCP + Commitments = Interactive Argument

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

PCP + Commitments

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

PCP + Commitments + Fiat-Shamir

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

PCP + Commitments + Fiat-Shamir

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

• Recipe #2: [BMW ’98, KRR ’14]

PCP + Commitments + Fiat-Shamir

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

• Recipe #2: [BMW ’98, KRR ’14]

PCP + Commitments

“Non-Signaling” PCP + FHE

+ Fiat-Shamir

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

• Recipe #2: [BMW ’98, KRR ’14]

PCP + Commitments

“Non-Signaling” PCP + FHE

+ Fiat-Shamir

PCP to SNARG?

• Recipe #1: [Kilian ’92, Micali ’94] (not in talk)

• Recipe #2: [BMW ’98, KRR ’14]

PCP + Commitments

“Non-Signaling” PCP + FHE

+ Fiat-Shamir

Fully Homomorphic Encryption

Fully Homomorphic Encryption

m

Fully Homomorphic Encryption

m

Fully Homomorphic Encryption

m

m

Fully Homomorphic Encryption

m

m
Satisfies usual properties of

an encryption scheme

Fully Homomorphic Encryption

m

m

Fully Homomorphic Encryption

m

m

Function f

Fully Homomorphic Encryption

m

m

Function f
f(m)

Fully Homomorphic Encryption

m

m

Function f
f(m)

f(m)

Fully Homomorphic Encryption

m

m

Function f
f(m)

f(m)

Size:
≈ Oλ(| f(m) |)

Fully Homomorphic Encryption

m

m

Function f
f(m)

f(m)
Theorem [G09, BV11]. Assuming polynomial hardness

LWE, there exist (leveled) FHE.

Size:
≈ Oλ(| f(m) |)

KRR14 Construction
Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

KRR14 Construction
Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

FHE keys
𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

KRR14 Construction

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

FHE keys
𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

KRR14 Construction

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

FHE keys
𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…a1 a2 ak

KRR14 Construction

a1 a2 ak
…

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

Homomorphically evaluate
𝖯𝖢𝖯 . 𝖠𝗇𝗌𝗐𝖾𝗋(Π, 𝗊𝗂)

𝒫 𝒱

FHE keys
𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…a1 a2 ak

KRR14 Construction

a1 a2 ak
…

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

Homomorphically evaluate
𝖯𝖢𝖯 . 𝖠𝗇𝗌𝗐𝖾𝗋(Π, 𝗊𝗂)

𝒫 𝒱

FHE keys
𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

Decrypt and accept if

PCP verifier accepts

a1 a2 ak

KRR14 Construction

a1 a2 ak
…

Intuition: How can cheat if he doesn’t know  
what is being queried (FHE security)?

𝒫

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

Homomorphically evaluate
𝖯𝖢𝖯 . 𝖠𝗇𝗌𝗐𝖾𝗋(Π, 𝗊𝗂)

𝒫 𝒱

FHE keys
𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

Decrypt and accept if

PCP verifier accepts

a1 a2 ak

KRR14 Construction

a1 a2 ak
…

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

KRR14 Construction

a1 a2 ak
…

Issue 1: Need a secret key to verify (can be solved using [JKLM25])

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

KRR14 Construction

a1 a2 ak
…

Issue 1: Need a secret key to verify (can be solved using [JKLM25])
Issue 2: There exist PCPs and FHE schemes for which this compiler is not
sound. [DLNNR04, DHRW16]

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

KRR14 Construction

a1 a2 ak
…

Issue 1: Need a secret key to verify (can be solved using [JKLM25])
Issue 2: There exist PCPs and FHE schemes for which this compiler is not
sound. [DLNNR04, DHRW16]
• Still runs into the problem that the verifier is not committed to one !

(Bonus slide demonstrating this)
Π

q1 q2 qk
…𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

𝒫 𝒱

𝗌𝗄𝟣 𝗌𝗄𝟤 𝗌𝗄𝗄

…

KRR14 Construction

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

KRR14 Construction

Independent keys: Adversary doesn’t “see all” anymore.{qi}i

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

KRR14 Construction

Independent keys: Adversary doesn’t “see all” anymore.{qi}i

i.e. “Information” should not be transmitted between answers.

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]

KRR14 Guarantee

KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)

KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)
𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)

KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

Semantic security of : 
PCPs answers should be indistinguishable in both experiments.

(𝗌𝗄𝟥, 𝗌𝗄𝟦)
(a1, a2)

𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)
𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)

Enter: Non-Signaling PCPs

Enter: Non-Signaling PCPs

Enter: Non-Signaling PCPs

Family of distributions:  
𝒟 = {DQ}Q

Enter: Non-Signaling PCPs

Family of distributions:  
𝒟 = {DQ}Q

Q

Enter: Non-Signaling PCPs

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ ← DQ

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ ← DQ

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ

AQ ← DQ

a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ

AQ ← DQ AQ′￼
← DQ′￼

a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Non-signaling: Let . 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Q

AQ

AQ ← DQ AQ′￼
← DQ′￼

a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Non-signaling: Let . 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Q

AQ

AQ ← DQ AQ′￼
← DQ′￼

a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Non-signaling: Let . 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Q

AQ

NS Soundness: If
x ∉ ℒ
Pr

Q,AQ

[V(x, Q, AQ) = 1] ≤
1

𝗉𝗈𝗅𝗒(𝗇)

AQ ← DQ AQ′￼
← DQ′￼

Enter: Non-Signaling PCPs
Non-signaling:

. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1 Cannot detect change in
behaviour from others

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1 Cannot detect change in
behaviour from others

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1 Cannot detect change in
behaviour from others

Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality”

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling:
. 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Generalization of
quantum strategies. 

E.g. CHSH game. 
Quantum: ~0.85  

NS: 1

[Alternate view]

q′￼1 Cannot detect change in
behaviour from others

KRR Construction

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =

KRR Construction

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 = Theorem statement:  
FHE Security + NS-PCP = KRR Secure

Pf. Cheating gives an NS PCP strategy 𝒜 ∎

KRR Construction

We have nsPCPs for:
Deterministic Computations  
[KRR14, BHK17, CJJ21ab, KVZ21, …]

NTISP [BKK+17, KVZ21]
Batch-NP [CJJ21ab, WW22, …]

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 = Theorem statement:  
FHE Security + NS-PCP = KRR Secure

Pf. Cheating gives an NS PCP strategy 𝒜 ∎

KRR Construction

We have nsPCPs for:
Deterministic Computations  
[KRR14, BHK17, CJJ21ab, KVZ21, …]

NTISP [BKK+17, KVZ21]
Batch-NP [CJJ21ab, WW22, …]

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 = Theorem statement:  
FHE Security + NS-PCP = KRR Secure

Pf. Cheating gives an NS PCP strategy 𝒜 ∎

What about NP?

Any questions so far?

Any questions so far?

Let’s build
SNARGs for

𝖭𝖯

Any questions so far?

The plan:
nsPCP for  

  
SNARG for

ℒ
→

ℒ

Let’s build
SNARGs for

𝖭𝖯

The plan:
nsPCP for  

  
SNARG for

ℒ
→

ℒ

Let’s build
SNARGs for

𝖭𝖯

The plan:
nsPCP for  

  
SNARG for

ℒ
→

ℒ

Theorem: 
There is no

nsPCP  
for 𝖭𝖯

Let’s build
SNARGs for

𝖭𝖯

The plan:
nsPCP for  

  
SNARG for

ℒ
→

ℒ

Theorem: 
There is no

nsPCP  
for 𝖭𝖯

Let’s build
SNARGs for

𝖭𝖯

Theorem: 
There is no

nsPCP  
for 𝖭𝖯

The Non-Signaling Barrier

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length with locality . Here is an
algorithm for SAT:

ℓ k

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length with locality . Here is an
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP
has a successful non-signaling strategy for . Output 1 if yes, 0
otherwise.

ℓO(k)

x

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length with locality . Here is an
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP
has a successful non-signaling strategy for . Output 1 if yes, 0
otherwise.

ℓO(k)

x
#Variables in LP correspond (roughly)  

to all possible query sets to the PCPQ

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length with locality . Here is an
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP
has a successful non-signaling strategy for . Output 1 if yes, 0
otherwise.

ℓO(k)

x

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length with locality . Here is an
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP
has a successful non-signaling strategy for . Output 1 if yes, 0
otherwise.

ℓO(k)

x

• For and , . Contradiction ℓ = 𝗉𝗈𝗅𝗒(𝗇) k ≪ n ℓO(k) ≪ 2O(n) ∎

The Non-Signaling Barrier
• Theorem. Assuming SAT requires time, there is no efficient NS PCP

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length with locality . Here is an
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP
has a successful non-signaling strategy for . Output 1 if yes, 0
otherwise.

ℓO(k)

x

• For and , . Contradiction ℓ = 𝗉𝗈𝗅𝗒(𝗇) k ≪ n ℓO(k) ≪ 2O(n) ∎

THE END

THE END

THE END

THE END

 Our observation:
What if is ? Then .

There is no contradiction!
ℓ 2O(n) ℓk ≥ 2O(n)

This work: There is more to be done!

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =𝒫

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =𝒫
w qi

ai

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.
• Sufficient if each entry of the PCP can be computed locally!!!

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =𝒫
w qi

ai

This work: There is more to be done!
• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.
• Sufficient if each entry of the PCP can be computed locally!!!

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =𝒫
w qi

ai

Each , |qi | = O(n) |ai | = O(1)

This work

This work
• Theorem 1. There exists a SNARG for NP assuming

• Fully homomorphic encryption (LWE).

• There exists an exponential-length “nice” non-signaling PCP for
with “weak soundness”.

𝖭𝖯

This work
• Theorem 1. There exists a SNARG for NP assuming

• Fully homomorphic encryption (LWE).

• There exists an exponential-length “nice” non-signaling PCP for
with “weak soundness”.

𝖭𝖯

• “Nice”: Correctness can be proven in propositional logic (Extended Frege).

This work
• Theorem 1. There exists a SNARG for NP assuming

• Fully homomorphic encryption (LWE).

• There exists an exponential-length “nice” non-signaling PCP for
with “weak soundness”.

𝖭𝖯

• “Nice”: Correctness can be proven in propositional logic (Extended Frege).
• Ask me later

This work
• Theorem 1. There exists a SNARG for NP assuming

• Fully homomorphic encryption (LWE).

• There exists an exponential-length “nice” non-signaling PCP for
with “weak soundness”.

𝖭𝖯

• “Nice”: Correctness can be proven in propositional logic (Extended Frege).
• Ask me later

• Construction: KRR14 + “Encrypt-Hash-and-BARG” ([JKLV24, JKLM25])

This work
• Theorem 1. There exists a SNARG for NP assuming

• Fully homomorphic encryption (LWE).

• There exists an exponential-length “nice” non-signaling PCP for
with “weak soundness”.

𝖭𝖯

• “Nice”: Correctness can be proven in propositional logic (Extended Frege).
• Ask me later

• Construction: KRR14 + “Encrypt-Hash-and-BARG” ([JKLV24, JKLM25])
• [JKLM25]: Any “nice” designated-verifier SNARG can be boosted to be

publicly verifiable.

Soundness vs. Weak Soundness

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies ,

.

𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies ,

.

𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)
• Weak NS soundness: For all NS strategies , there exists

any such that  

.

𝒟 = {DQ}Q
Q

Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies ,

.

𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)
• Weak NS soundness: For all NS strategies , there exists

any such that  

.

𝒟 = {DQ}Q
Q

Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies ,

.

𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)
• Weak NS soundness: For all NS strategies , there exists

any such that  

.

𝒟 = {DQ}Q
Q

Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

“Average-case soundness”

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies ,

.

𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)
• Weak NS soundness: For all NS strategies , there exists

any such that  

.

𝒟 = {DQ}Q
Q

Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

“Average-case soundness”

“Worst-case soundness”

Soundness vs. Weak Soundness
• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies ,

.

𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)
• Weak NS soundness: For all NS strategies , there exists

any such that  

.

𝒟 = {DQ}Q
Q

Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

Intuition: We show that the compiler from [JKLM25] is sound even
if the underlying dvSNARG has “worst-case soundness”

“Average-case soundness”

“Worst-case soundness”

Weakly sound nsPCP?

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

• Theorem 2: Hadamard PCP has weak NS soundness under Conjecture 3.

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

• Theorem 2: Hadamard PCP has weak NS soundness under Conjecture 3.

• Let .R = ℝ(x1, …, xk)/⟨x2
1 − 1,…, x2

k − 1⟩

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

• Theorem 2: Hadamard PCP has weak NS soundness under Conjecture 3.

• Let .R = ℝ(x1, …, xk)/⟨x2
1 − 1,…, x2

k − 1⟩

Conjecture 3 (“Low-Norm Nullstellensatz”): Consider a special set
, let be the common zeros. For all

 that vanish on , there exists such that
P = {p1, …, pt} ∈ R V(P) ⊆ {±1}k

f(x1, …, xk) V(P) {qi}i

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

• Theorem 2: Hadamard PCP has weak NS soundness under Conjecture 3.

• Let .R = ℝ(x1, …, xk)/⟨x2
1 − 1,…, x2

k − 1⟩

Conjecture 3 (“Low-Norm Nullstellensatz”): Consider a special set
, let be the common zeros. For all

 that vanish on , there exists such that
P = {p1, …, pt} ∈ R V(P) ⊆ {±1}k

f(x1, …, xk) V(P) {qi}i

 and .f = ∑
i

piqi ∑
i

| |qi | |1 ≤ 𝗉𝗈𝗅𝗒(n) ⋅ | | f | |1

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

• Theorem 2: Hadamard PCP has weak NS soundness under Conjecture 3.

• Let .R = ℝ(x1, …, xk)/⟨x2
1 − 1,…, x2

k − 1⟩

Conjecture 3 (“Low-Norm Nullstellensatz”): Consider a special set
, let be the common zeros. For all

 that vanish on , there exists such that
P = {p1, …, pt} ∈ R V(P) ⊆ {±1}k

f(x1, …, xk) V(P) {qi}i

 and .f = ∑
i

piqi ∑
i

| |qi | |1 ≤ 𝗉𝗈𝗅𝗒(n) ⋅ | | f | |1

Hilbert’s

Weakly sound nsPCP?
• No unconditional result :(We invite you to help us :)

• Theorem 2: Hadamard PCP has weak NS soundness under Conjecture 3.

• Let .R = ℝ(x1, …, xk)/⟨x2
1 − 1,…, x2

k − 1⟩

Conjecture 3 (“Low-Norm Nullstellensatz”): Consider a special set
, let be the common zeros. For all

 that vanish on , there exists such that
P = {p1, …, pt} ∈ R V(P) ⊆ {±1}k

f(x1, …, xk) V(P) {qi}i

 and .f = ∑
i

piqi ∑
i

| |qi | |1 ≤ 𝗉𝗈𝗅𝗒(n) ⋅ | | f | |1

Roadmap of this work

Roadmap of this work

SNARG for NP

“Nice” exponential-size
weak nsPCP Theorem 1: 

+ LWE (based on
[JKLM25])

Roadmap of this work

SNARG for NP

“Nice” exponential-size
weak nsPCP Theorem 1: 

+ LWE (based on
[JKLM25])

Conjecture:
Low norm nullstellensatz

Hadamard PCP has  
weak NS soundness

Theorem 2

Roadmap of this work

SNARG for NP

“Nice” exponential-size
weak nsPCP Theorem 1: 

+ LWE (based on
[JKLM25])

Conjecture:
Low norm nullstellensatz

Hadamard PCP has  
weak NS soundness

Theorem 2

Theorem 3 
+ LWE/Bilinear Maps/DDH

Roadmap of this work

SNARG for NP

“Nice” exponential-size
weak nsPCP Theorem 1: 

+ LWE (based on
[JKLM25])

Conjecture:
Low norm nullstellensatz

Hadamard PCP has  
weak NS soundness

Theorem 2

Theorem 3 
+ LWE/Bilinear Maps/DDH

Roadmap of this work

SNARG for NP

“Nice” exponential-size
weak nsPCP Theorem 1: 

+ LWE (based on
[JKLM25])

Conjecture:
Low norm nullstellensatz

Hadamard PCP has  
weak NS soundness

Theorem 2

Simpler and direct construction and analysis
than [JKLM25]. (Linearly homomorphic

encryption + BARG is good enough)

Theorem 3 
+ LWE/Bilinear Maps/DDH

Roadmap of this work

SNARG for NP

“Nice” exponential-size
weak nsPCP Theorem 1: 

+ LWE (based on
[JKLM25])

Conjecture:
Low norm nullstellensatz

Hadamard PCP has  
weak NS soundness

Theorem 2

Simpler and direct construction and analysis
than [JKLM25]. (Linearly homomorphic

encryption + BARG is good enough)

Rest of the Talk

Rest of the Talk

Theorem 4 (Unconditional).  
For Hadamard PCP, no NS strategy can perfectly

satisfy every test.

Rest of the Talk

Theorem 4 (Unconditional).  
For Hadamard PCP, no NS strategy can perfectly

satisfy every test.

i.e. For any NS strategy , there exists such that 𝒟 = {DQ}Q Q

Rest of the Talk

Theorem 4 (Unconditional).  
For Hadamard PCP, no NS strategy can perfectly

satisfy every test.

i.e. For any NS strategy , there exists such that 𝒟 = {DQ}Q Q
. Pr[V(x, Q, A) = 1 |A ← DQ] < 1

Rest of the Talk

Theorem 4 (Unconditional).  
For Hadamard PCP, no NS strategy can perfectly

satisfy every test.

i.e. For any NS strategy , there exists such that 𝒟 = {DQ}Q Q
. Pr[V(x, Q, A) = 1 |A ← DQ] < 1

Recall Goal: . Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

Quadratic Equations

Quadratic Equations
• NP Language: . 𝖰𝗎𝖺𝖽𝖤𝗊

Quadratic Equations
• NP Language: . 𝖰𝗎𝖺𝖽𝖤𝗊

• Instance: Set of 3-local linear equations on variables. N = n + (n
2)

Quadratic Equations
• NP Language: . 𝖰𝗎𝖺𝖽𝖤𝗊

• Instance: Set of 3-local linear equations on variables. N = n + (n
2)

• Witnesses: satisfying above equations and .w̃ = {wi}i ∪ {wij}ij wij = wi ⋅ wj

Quadratic Equations
• NP Language: . 𝖰𝗎𝖺𝖽𝖤𝗊

• Instance: Set of 3-local linear equations on variables. N = n + (n
2)

• Witnesses: satisfying above equations and .w̃ = {wi}i ∪ {wij}ij wij = wi ⋅ wj

…

w1 − w2 + w34 = 0

w56 + w67 + w78 = 1
Instance

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

For :q ∈ {0,1}N

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃

For :q ∈ {0,1}N

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩

For :q ∈ {0,1}N

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, qi⟩ ⟨w̃, qj⟩ ⟨w̃, qk⟩⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

wi wj wij

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

• Satisfiability: Check that 3-local linear
equations are satisfied.

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

• Satisfiability: Check that 3-local linear
equations are satisfied.

wi wj wk

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

• Satisfiability: Check that 3-local linear
equations are satisfied.

E.g. Contains
wj − wj + wk = 0

wi wj wk

k = O(1)

[Babai-Fortnow-Lund ’91]

Hadamard PCP, simplified
• NP Language: .

• Instance: Set of 3-local linear

equations on variables.

• Witnesses:
satisfying above equations and

.

𝖰𝗎𝖺𝖽𝖤𝗊

N = n + (n
2)

w̃ = {wi}i ∪ {wij}ij

wij = wi ⋅ wj

w̃ ⟨w̃, q⟩
(Indicator vectors)q

For :q ∈ {0,1}N

• Verifier on checks:q1, q2, …, qk

• Linear consistency: If ,
then .

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

• Quadratic consistency: Check
.wij = wi ⋅ wj

• Satisfiability: Check that 3-local linear
equations are satisfied.

k = O(1)

[Babai-Fortnow-Lund ’91]

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

• Step 1: Any NS strategy satisfying linear
and quadratic consistency can be
written as probabilities over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p2

p1

p2n

…

• Step 1: Any NS strategy satisfying linear
and quadratic consistency can be
written as probabilities over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p2

p1

p2n

…

 corresponds to the marginals.DQ

• Step 1: Any NS strategy satisfying linear
and quadratic consistency can be
written as probabilities over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

• Step 1: Any NS strategy satisfying linear
and quadratic consistency can be
written as probabilities over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

• Step 1: Any NS strategy satisfying linear
and quadratic consistency can be
written as probabilities over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Wishful Thinking (fake proof)

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

• Step 1: Any NS strategy satisfying linear
and quadratic consistency can be
written as probabilities over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

• Step 2: If , every encoding fails
 one satisfiability test. By PHP,

some test that fails with probability
 over the distribution

x ∉ ℒ
≥ 1

1/#tests

Real Proof Sketch

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

Extreme Bird’s Eye View

Real Proof Sketch

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj

• Step 1: NS strategy satisfying linear and
quadratic consistency can be written as
“pseudo-probabilities” over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Extreme Bird’s Eye View

Real Proof Sketch

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj
𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

• Step 1: NS strategy satisfying linear and
quadratic consistency can be written as
“pseudo-probabilities” over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Extreme Bird’s Eye View

Real Proof Sketch

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj
𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

• Step 1: NS strategy satisfying linear and
quadratic consistency can be written as
“pseudo-probabilities” over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Extreme Bird’s Eye View

Real Proof Sketch

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj
𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

• Step 1: NS strategy satisfying linear and
quadratic consistency can be written as
“pseudo-probabilities” over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Extreme Bird’s Eye View

Real Proof Sketch

• Verifier on checks:

• Linear consistency: If

, then
.

• Quadratic consistency: Check
.

• Satisfiability: Check that 3-local
linear equations are satisfied.

q1, q2, …, qk

qi ⊕ qj ⊕ qk = 0
ai ⊕ aj ⊕ ak = 0

wij = wi ⋅ wj
𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

• Step 1: NS strategy satisfying linear and
quadratic consistency can be written as
“pseudo-probabilities” over “correct”
encodings, i.e. .{𝖧𝖺𝖽(w̃)}w∈{0,1}n

Extreme Bird’s Eye View

Uses Hilbert’s Nullstellensatz  
and Sherali-Adams pseudoexpectations.

Uses ideas from [CMS ’18]

Real Proof Sketch
• Step 1: NS strategy satisfying linear and quadratic consistency can be

written as “pseudo-probabilities” over “correct” encodings, i.e.
.{𝖧𝖺𝖽(w̃)}w∈{0,1}n

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Extreme Bird’s Eye View

Real Proof Sketch
• Step 1: NS strategy satisfying linear and quadratic consistency can be

written as “pseudo-probabilities” over “correct” encodings, i.e.
.{𝖧𝖺𝖽(w̃)}w∈{0,1}n

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Let be the set of
such that on is .
SQ,A i ∈ {1,…,2n}

𝖧𝖺𝖽(w̃i) Q A

Extreme Bird’s Eye View

Real Proof Sketch
• Step 1: NS strategy satisfying linear and quadratic consistency can be

written as “pseudo-probabilities” over “correct” encodings, i.e.
.{𝖧𝖺𝖽(w̃)}w∈{0,1}n

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Let be the set of
such that on is .
SQ,A i ∈ {1,…,2n}

𝖧𝖺𝖽(w̃i) Q A

Then,
.Pr[A ← DQ] = ∑

i∈SQ,AQ

p̃i

Extreme Bird’s Eye View

Real Proof Sketch
• Step 1: NS strategy satisfying linear and quadratic consistency can be

written as “pseudo-probabilities” over “correct” encodings, i.e.
.{𝖧𝖺𝖽(w̃)}w∈{0,1}n

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Let be the set of
such that on is .
SQ,A i ∈ {1,…,2n}

𝖧𝖺𝖽(w̃i) Q A

Then,
.Pr[A ← DQ] = ∑

i∈SQ,AQ

p̃i

Local views look “real”: These
probabilities will be in [0, 1]

Extreme Bird’s Eye View

Real Proof Sketch

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Extreme Bird’s Eye View

Real Proof Sketch
• Step 2: If , then every encoding fails some satisfiability test.x ∉ ℒ

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Extreme Bird’s Eye View

Real Proof Sketch
• Step 2: If , then every encoding fails some satisfiability test.x ∉ ℒ

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Extreme Bird’s Eye View

2
3

5

Real Proof Sketch
• Step 2: If , then every encoding fails some satisfiability test.x ∉ ℒ

• Issue: Might not be observable, because pseudo-probabilities can be
negative.

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Extreme Bird’s Eye View

2
3

5

Real Proof Sketch
• Step 2: If , then every encoding fails some satisfiability test.x ∉ ℒ

• Issue: Might not be observable, because pseudo-probabilities can be
negative.

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be
negative!
Require

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Fix (high-level):  
Use Hadamard encoding to read
“random linear combinations of

the satisfiability tests”.

Use careful counting.

Extreme Bird’s Eye View

2
3

5

Summary

Summary
• In this work: We show a way around the “non-signaling barrier” and

establish a new pathway towards constructing SNARGs for NP.

Summary
• In this work: We show a way around the “non-signaling barrier” and

establish a new pathway towards constructing SNARGs for NP.

• We relax the requirement in two ways:

Summary
• In this work: We show a way around the “non-signaling barrier” and

establish a new pathway towards constructing SNARGs for NP.

• We relax the requirement in two ways:

• We allow for exponential-length PCPs.

Summary
• In this work: We show a way around the “non-signaling barrier” and

establish a new pathway towards constructing SNARGs for NP.

• We relax the requirement in two ways:

• We allow for exponential-length PCPs.

• We relax to soundness requirement to “weak soundness”.

Summary
• In this work: We show a way around the “non-signaling barrier” and

establish a new pathway towards constructing SNARGs for NP.

• We relax the requirement in two ways:

• We allow for exponential-length PCPs.

• We relax to soundness requirement to “weak soundness”.

• Candidate construction under a conjecture.

Summary
• In this work: We show a way around the “non-signaling barrier” and

establish a new pathway towards constructing SNARGs for NP.

• We relax the requirement in two ways:

• We allow for exponential-length PCPs.

• We relax to soundness requirement to “weak soundness”.

• Candidate construction under a conjecture.

• Open question: Does there exist a NS PCP with weak soundness?

PROVEN DISPROVEN

+ COOKIES

Low-Norm
Nullstellensatz

Thank you for
your attention!

ePrint 2026/006

Thank you for your attention!

ePrint 2026/006

Images used are from flaticon.com, tikzpeople,

Oversimplified counterexample
• Language: Graph 3-Colouring

• PCP string: 3-colouring of the graph

• Verifier: Check a random edge (v1, v2). Catches with probability .1/ |E |

[Dwork-Landberg-Naor-Nissim-Reingold ’04]

v1 v2

c1 c2

Issue: Prover is not “committed” to
any single PCP string!

