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TLDR

 Theorem. We construct SNARGs for NP assuming:
 Hardness of LWE, Bilinear Maps or DDH,
A mathematical conjecture above multivariate polynomials of reals.

* This talk: | will talk about this fascinating connection between SNARGs
and PCPs

e Giving you an open problem to solve :)
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“x € L7

Common reference string
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Pr[z — (crs) AV (crs,x,m) = 1] < 27

CrsS

e Succinctness: | 7| < [w].
» Correctness: If 7 is honestly generated, 7" (crs, x, ) accepts.

» (Non-Adaptive) Soundness: If x &€ £, difficult for ppt &/ to come up with
accepting proof.
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Micali’00, IKO’07, GKR’08, IKOS’09, Groth’10, SBW’11, SMBW’12, Lipmaa’12,
CMT’12, DFH’12, SVPBBW’12, TRMP’12, GGPR’13, BCIOP’13, BCCT’13, Thaler'13,
BCGTV’13, PHGR’13, BSCGT’13, BCGGMTV’14, BCCGP’16, Groth’16, GMO’16,
GLRT17, AHIV’17, BSBCGGHPRST 17, WJBSTWW’17, BBBPWM’18,
BCGMMW’18, BSBHR’18, WTSTW’18, WZCPS’18, GMNO’18, FKL'18, BBCGI’19,
BBHR’19, BCRSVW’19, BSCRSVW’19, CFQ19, GWC’19, KPV’19, KPY’19,
MBKM’19, Nitulescu’19, XZZPS’19, Gabizon’19, BBS’20, BSCIKS’20, BFHVXZ’20,
COS’20, CHMMVW’20, KZ°'20, KPPS’20, SGKS’20, SL'20, Setty’20, ZXZS’20,
BMMTV’21, GLSTW’21, GMN21, GPR’21, Sta’21, ZLWZS5XZ’21, Bay’22, CBBZ’22,
XZCZ2JBS’22, X2S°22, ...
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SNARGs for NP

From indistinguishability obfuscation

From witness encryption®
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SNARGs for NP

Obfustopia
Not known from standard,
post-quantum assumptions

From Learning with Error, Bilinear Maps, Etc.

P or Batch-NP [KRR14, BHK17, CJJ21, K\VZ21]
Monotone-Policy Batch-NP [KRR14, BHK1/7, CJJ21, KVZ21]

Natural subclasses of NP N coNP [JKLV24, JKLM25]



SNARGs for NP in Standard Model?

SNARGs for NP

Obfustopia
Not known from standard,
post-quantum assumptions

From Learning with Error, Bilinear Maps, Etc.

Subclass of NP



SNARGs for NP in Standard Model?

SNARGs for NP

Obfustopia
Not known from standard,
post-quantum assumptions

i gt

From Learning with Error, Bilinear Maps, Etc.

Subclass of NP



SNARGs for NP in Standard Model?

SNARGs for NP

Obfustopia
Not known from standard,
post-quantum assumptions

7 Can we build SNARGSs from
M LWE/Bilinear Maps/etc?

From Learning with Error, Bilinear Maps, Etc.

Subclass of NP
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Crs = ql qz ‘.- qk J

) ||
Not committed to any string! o D
Can choose «; after seeing @ il i “ -

Succinct and Correct Need some cryptography in this
x Not sound compiler to restrict /!




PCP to SNARG?



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + 6 Commitments



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + é Commitments = Interactive Argument



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + 6 Commitments



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + é Commitments + Fiat-Shamir



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + é Commitments +|{Fiat-Shamir ;_



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + 6 Commitments +{Fiat-Shamir |

 Recipe #2: [BMW ’98, KRR ’14]



PCP to SNARG?

 Recipe #1: [Kilian ’92, Micali ’94]

PCP + é Commitments +{Fiat-Shamir |

 Recipe #2: [BMW ’98, KRR ’14]

“Non-Signaling” PCP + aFHE
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8

8

Function f Sive:
m f(m) = Oofm))

| |

m f(m)

Theorem [G09, BV11]. Assuming polynomial hardness
LWE, there exist FHE.




KRR14 Construction

T
-
7 -\ -




KRR14 Construction

E ; ﬁ -
N\,
‘\
\ i
N
\

\

. —_
[ )
=
~ 7
] -} %
‘ hV\ l
I H EH B

sk sk,  skg
FHE keys




KRR14 Construction

Based on [Biehl-Meyer-Wetzel 98]

- 8 W @ s
Uk Q\ Crs = ql . qk ‘ {I 7

' .

sk, sk, sk,
FHE keys




KRR14 Construction

), -9
P q\ Crs = ql

fof | fof o]




KRR14 Construction

Based on [Biehl-Meyer-Wetzel 98]

M 3
::-/'L :

o¥
) ;1 %
‘ 3 l

sk, sk, sk,
FHE keys

laf fol

Homomorphically evaluate
PCP . Answer(1l, g;)




KRR14 Construction

7 Q\ o 8‘11 W aqk o
Jof | Jol o Tyt

EL E Llrave
Homomorphically evaluate
PCP . Answer(1l, g;)

Decrypt and accept if
PCP verifier accepts



KRR14 Construction
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P Q\ crs = 7g,

laf fol

Homomorphically evaluate
PCP . Answer(1l, g;)

EL E Lrave

Decrypt and accept if
PCP verifier accepts

Intuition: How can & cheat if he doesn’t know
what is being queried (FHE security)?
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Based on [Biehl-Meyer-Wetzel 98]

8 Y

T I

Issue 1: Need a secret key to verify (can be solved using [JKLMZ5])

Issue 2: There exist PCPs and FHE schemes for which this compiler is not
sound. [DLNNRO4, DHRW16]

o Still runs into the problem that the verifier is not committed to one 11!
(Bonus slide demonstrating this)
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Based on [Biehl-Meyer-Wetzel 98]

Y

8

& . 8

Independent keys: Adversary doesn’t “see all” {g.}, anymore.

.e. “Information” should not be transmitted between answers.
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Semantic security of (skj, sk,):

PCPs answers (a,, a,) should be indistinguishable in both experiments.
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¢, Q -
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NS Soundness: If x € £

QIZXQ [V(xa QaAQ) — 1] S poly(n)




Enter: Non-Signhaling PCPs

Non-signaling:
S=0nQ.
Aplg=E Ayl



Enter: Non-Signhaling PCPs

Non-signaling:
S=0nQ. Arbitrary correlation that obeys “locality”

AQ\SEAQ,\S



Enter: Non-Signhaling PCPs

Non-signaling:
S=0n¢Q’ Arbitrary correlation that obeys “locality”

AQ\SEAQ,\S




Enter: Non-Signhaling PCPs

Non-signaling:
S=0nQ. Arbitrary correlation that obeys “locality”

AQ‘S:AQ"S




Enter: Non-Signhaling PCPs

Non-signaling:
§ = Q NnQO' Arbitrary correlation that obeys “locality”




Enter: Non-Signhaling PCPs

Non-signaling:
§ = Q NnQO' Arbitrary correlation that obeys “locality”




Enter: Non-Signhaling PCPs

Non-signaling:
S=0n¢Q’ Arbitrary correlation that obeys “locality”

AQ\SEAQ,\S




Enter: Non-Signhaling PCPs

Non-signaling:
S=0n¢Q’ Arbitrary correlation that obeys “locality”

Aglg = Ag s

Cannot detect change in
behaviour from others



Enter: Non-Signhaling PCPs

Non-signaling:
S=0n¢Q’ Arbitrary correlation that obeys “locality”

Aglg = Ag s

Cannot detect change in
behaviour from others



Enter: Non-Signhaling PCPs

Non-signaling:
S=0n¢Q’ Arbitrary correlation that obeys “locality”

Aglg = Ag s

Cannot detect change in
behaviour from others



Enter:

Non-signaling:
§ = Q NnQO' Arbitrary correlation that obeys “locality”

Non-Signhaling PCPs

Generalization of
quantum strategies.
E.g. CHSH game.

Quantum: ~0.85
NS: 1

Cannot detect change in
behaviour from others
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crs = 8q1 W aqk Theorem statement:

8

FHE Security + NS-PCP = KRR Secure

8

Pf. Cheating &/ gives an NS PCP strategy B

ay 29

1,

We have nsPCPs for:

Deterministic Computations

What about NP?
NTISP
Batch-NP
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 Theorem. Assuming SAT requires 20(0) time, there is no efficient NS PCP
for NP.

» Proof: Suppose there exists a PCP of length £ with locality k. Here is an
algorithm for SAT:

« Compute an PCP ¢ O)_size linear program to determine if the PCP

has a successful non-signaling strategy for x. Output 1 if yes, O
otherwise.

N -
+ For £ = poly(n) and k < n, 79" <« 29U Contradiction B vV
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Our observation:
What if Z is 292 Then £* > 20
There Is no contradiction!
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. What if... the PCP had length Z = 2°"? Impossibility goes away!
* But... Prover needs to have the PCP in his hand.
o Sufficient if each entry of the PCP can be computed locally!!!

W - %
. ¢

i
Each |g;| = O(n), |a;| = O(1)
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This work

 Theorem 1. There exists a SNARG for NP assuming

e Fully homomorphic encryption (LWE).

e There exists an exponential-length “nice” non-signaling PCP for NP
with “weak soundness”.

* “Nice”: Correctness can be proven in propositional logic (Extended Frege).

e Construction: KRR14 + “Encrypt-Hash-and-BARG” ([JKLV24, JKLM25])

o [JKLM25]: Any “nice” designated-verifier SNARG can be boosted to be
publicly verifiable.
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Soundness vs. Weak Soundness

e Suppose x & £
+ Usual NS Soundness: For all NS strategies 2 = {D},

Pr[V(x,0,A) = 1|A « Dyl < |
e poly(n)
» Weak NS soundness: For all NS strategies & = {D,)} ), there exists

any (O such that
Pr[V(x,0,A) = 1|A <« Dyl < 1 =

“Average-case soundness”

“Worst-case soundness’

poly(n)

Intuition: We show that the compiler from [JKLMZ25] is sound even
if the underlying dvSNARG has “worst-case soundness”
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For Hadamard PCP, no NS strategy can perfectly
satisfy every test.

.e. For any NS strategy & = {D,, } ), there exists () such that
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Extreme Eneen e Uvses ideas from [CMS ’18]
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Real Proof Sketch

Extreme Bird’s Eye View

« Step 2: If x & £, then every encoding fails some satisfiability test.

e Issue: Might not be observable, because pseudo-probabillities can be

negative.
Fix (high-level):
pi's can be Use Hadamard encoding to read
negative! “random linear combinations of

Require the satisfiability tests”.

Zﬁi= 1.

Use careful counting.

DQ corresponds to the marginals.
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Summary

In this work: We show a way around the “non-signaling barrier” and
establish a new pathway towards constructing SNARGs for NP,

We relax the requirement in two ways:

 \We allow for exponential-length PCPs.

* We relax to soundness requirement to “weak soundness”.
Candidate construction under a conjecture.

Open question: Does there exist a NS PCP with weak soundness?
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Oversimplified counterexample

[Dwork-Landberg-Naor-Nissim-Reingold ’04]
 Language: Graph 3-Colouring

 PCP string: 3-colouring of the graph

» Verifier: Check a random edge (v1, v2). Catches with probability 1/| E|.

Issue: Prover is not “committed” to
any single PCP string!




