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TLDR

• Theorem. We construct SNARGs for NP assuming:


• Hardness of LWE, Bilinear Maps or DDH,


• A mathematical conjecture above multivariate polynomials of reals. 

• This talk: I will talk about this fascinating connection between SNARGs 
and PCPs [BMW98, KRR14, BHK17, BKKSW18]


• Giving you an open problem to solve :)
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This work: Non-deterministic M
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Succinct Non-Interactive Arguments for NP
“ ”x ∈ ℒ

π

Common reference string

• Succinctness: .|π | ≪ |w |
• Correctness: If  is honestly generated,  accepts.π 𝒱(𝖼𝗋𝗌, x, π)
• (Non-Adaptive) Soundness: If , difficult for ppt  to come up with 

accepting proof.
x ∉ ℒ 𝒜

Pr
𝖼𝗋𝗌

[π ← 𝒜(𝖼𝗋𝗌) ∧ 𝒱(𝖼𝗋𝗌, x, π) = 1] ≤ 2−λ

𝒱𝒜
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From indistinguishability obfuscation  
[SW ’14, WW ’24, MPV ’24, WZ ’25, WW ’25]

From witness encryption* [JKLM ’25]

From Learning with Error, Bilinear Maps, Etc.
 or Batch-  [KRR14, BHK17, CJJ21, KVZ21]𝖯 𝖭𝖯

Monotone-Policy Batch-NP [KRR14, BHK17, CJJ21, KVZ21]

Natural subclasses of  [JKLV24, JKLM25]𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

?

Obfustopia 
Not known from standard,  

post-quantum assumptions

Subclass of NP

Can we build SNARGs from  
LWE/Bilinear Maps/etc?
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• Not sound 

q1 q2 qk…𝖼𝗋𝗌 =

a1 a2 ak
…

𝒱𝒜

Not committed to any string!
Can choose  after seeing ai 𝒬

Need some cryptography in this 
compiler to restrict !𝒜
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Fully Homomorphic Encryption

m

m

Function f
f(m)

f(m)
Theorem [G09, BV11]. Assuming polynomial hardness 

LWE, there exist (leveled) FHE.

Size: 
≈ Oλ( | f(m) | )
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Issue 1: Need a secret key to verify (can be solved using [JKLM25])
Issue 2: There exist PCPs and FHE schemes for which this compiler is not 
sound. [DLNNR04, DHRW16]
• Still runs into the problem that the verifier is not committed to one ! 

(Bonus slide demonstrating this)
Π
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Independent keys: Adversary doesn’t “see all”  anymore.{qi}i

i.e. “Information” should not be transmitted between answers.

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =

Based on [Biehl-Meyer-Wetzel ’98]



KRR14 Guarantee



KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3



KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3



KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)



KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)
𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)



KRR14 Guarantee

q1 q2 q4

a1 a2 a4

q3

a3

q1 q2 q′￼4

a1 a2 a′￼4

q′￼3

a′￼3

Semantic security of : 
PCPs answers  should be indistinguishable in both experiments.

(𝗌𝗄𝟥, 𝗌𝗄𝟦)
(a1, a2)

𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)
𝗌𝗄𝟣 𝗌𝗄𝟤

→ (a1, a2)



Enter: Non-Signaling PCPs



Enter: Non-Signaling PCPs



Enter: Non-Signaling PCPs

Family of distributions:  
𝒟 = {DQ}Q



Enter: Non-Signaling PCPs

Family of distributions:  
𝒟 = {DQ}Q

Q



Enter: Non-Signaling PCPs

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ ← DQ



Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ ← DQ



Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ

AQ ← DQ



a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Q

AQ

AQ ← DQ AQ′￼
← DQ′￼



a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Non-signaling: Let . 
 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Q

AQ

AQ ← DQ AQ′￼
← DQ′￼



a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Non-signaling: Let . 
 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Q

AQ

AQ ← DQ AQ′￼
← DQ′￼



a′￼2a′￼2 a′￼2 a′￼k

Q′￼

AQ′￼

Enter: Non-Signaling PCPs

a1 a2 ak−1 ak

Family of distributions:  
𝒟 = {DQ}Q

Non-signaling: Let . 
 

S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Q

AQ

NS Soundness: If 
x ∉ ℒ
Pr

Q,AQ

[V(x, Q, AQ) = 1] ≤
1

𝗉𝗈𝗅𝗒(𝗇)

AQ ← DQ AQ′￼
← DQ′￼



Enter: Non-Signaling PCPs
Non-signaling: 

. 
 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1 Cannot detect change in 
behaviour from others



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1 Cannot detect change in 
behaviour from others



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

[Alternate view]

q′￼1 Cannot detect change in 
behaviour from others



Enter: Non-Signaling PCPs
Arbitrary correlation that obeys “locality” 

q1

q2

q3

q4

q5

a1

a2
a3 a4

a5

Non-signaling: 
. 

 
S = Q ∩ Q′￼

AQ |S ≡ AQ′￼
|S

Generalization of 
quantum strategies. 

E.g. CHSH game. 
Quantum: ~0.85  

NS: 1

[Alternate view]

q′￼1 Cannot detect change in 
behaviour from others



KRR Construction

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =



KRR Construction

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 = Theorem statement:  
FHE Security + NS-PCP = KRR Secure


Pf. Cheating  gives an NS PCP strategy 𝒜 ∎



KRR Construction

We have nsPCPs for: 
Deterministic Computations  
[KRR14, BHK17, CJJ21ab, KVZ21, …]

NTISP [BKK+17, KVZ21]  
Batch-NP [CJJ21ab, WW22, …]

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 = Theorem statement:  
FHE Security + NS-PCP = KRR Secure


Pf. Cheating  gives an NS PCP strategy 𝒜 ∎



KRR Construction

We have nsPCPs for: 
Deterministic Computations  
[KRR14, BHK17, CJJ21ab, KVZ21, …]

NTISP [BKK+17, KVZ21]  
Batch-NP [CJJ21ab, WW22, …]

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 = Theorem statement:  
FHE Security + NS-PCP = KRR Secure


Pf. Cheating  gives an NS PCP strategy 𝒜 ∎

What about NP?



Any questions so far?



Any questions so far?

Let’s build 
SNARGs for 

𝖭𝖯



Any questions so far?

The plan: 
nsPCP for  

  
SNARG for 

ℒ
→

ℒ

Let’s build 
SNARGs for 

𝖭𝖯



The plan: 
nsPCP for  

  
SNARG for 

ℒ
→

ℒ

Let’s build 
SNARGs for 

𝖭𝖯



The plan: 
nsPCP for  

  
SNARG for 

ℒ
→

ℒ

Theorem: 
There is no 

nsPCP  
for 𝖭𝖯

Let’s build 
SNARGs for 

𝖭𝖯



The plan: 
nsPCP for  

  
SNARG for 

ℒ
→

ℒ

Theorem: 
There is no 

nsPCP  
for 𝖭𝖯

Let’s build 
SNARGs for 

𝖭𝖯

Theorem: 
There is no 

nsPCP  
for 𝖭𝖯



The Non-Signaling Barrier



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length  with locality . Here is an 
algorithm for SAT:

ℓ k



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length  with locality . Here is an 
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP 
has a successful non-signaling strategy for . Output 1 if yes, 0 
otherwise. 

ℓO(k)

x



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length  with locality . Here is an 
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP 
has a successful non-signaling strategy for . Output 1 if yes, 0 
otherwise. 

ℓO(k)

x
#Variables in LP correspond (roughly)  

to all possible query sets  to the PCPQ



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length  with locality . Here is an 
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP 
has a successful non-signaling strategy for . Output 1 if yes, 0 
otherwise. 

ℓO(k)

x



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length  with locality . Here is an 
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP 
has a successful non-signaling strategy for . Output 1 if yes, 0 
otherwise. 

ℓO(k)

x

• For  and , . Contradiction ℓ = 𝗉𝗈𝗅𝗒(𝗇) k ≪ n ℓO(k) ≪ 2O(n) ∎



The Non-Signaling Barrier
• Theorem. Assuming SAT requires  time, there is no efficient NS PCP 

for NP.
2O(n)

• Proof: Suppose there exists a PCP of length  with locality . Here is an 
algorithm for SAT:

ℓ k

• Compute an PCP -size linear program to determine if the PCP 
has a successful non-signaling strategy for . Output 1 if yes, 0 
otherwise. 

ℓO(k)

x

• For  and , . Contradiction ℓ = 𝗉𝗈𝗅𝗒(𝗇) k ≪ n ℓO(k) ≪ 2O(n) ∎



THE END



THE END



THE END



THE END

 Our observation: 
What if  is ? Then . 
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ℓ 2O(n) ℓk ≥ 2O(n)
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• What if… the PCP had length ? Impossibility goes away!ℓ = 2O(n)

• But… Prover needs to have the PCP in his hand.
• Sufficient if each entry of the PCP can be computed locally!!!

q1 q2 qk

a1 a2 ak

…

…

𝖼𝗋𝗌 =𝒫
w qi

ai

Each , |qi | = O(n) |ai | = O(1)
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• Theorem 1. There exists a SNARG for NP assuming


• Fully homomorphic encryption (LWE).


• There exists an exponential-length “nice” non-signaling PCP for  
with “weak soundness”.

𝖭𝖯

• “Nice”: Correctness can be proven in propositional logic (Extended Frege).
• Ask me later 

• Construction: KRR14 + “Encrypt-Hash-and-BARG” ([JKLV24, JKLM25])
• [JKLM25]: Any “nice” designated-verifier SNARG can be boosted to be 

publicly verifiable. 
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• Suppose .x ∉ ℒ
• Usual NS Soundness: For all NS strategies , 
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𝒟 = {DQ}Q

Pr
Q

[V(x, Q, A) = 1 |A ← DQ] ≤
1

𝗉𝗈𝗅𝗒(n)
• Weak NS soundness: For all NS strategies , there exists 

any  such that  

.

𝒟 = {DQ}Q
Q

Pr[V(x, Q, A) = 1 |A ← DQ] ≤ 1 −
1

𝗉𝗈𝗅𝗒(n)

Intuition: We show that the compiler from [JKLM25] is sound even 
if the underlying dvSNARG has “worst-case soundness”

“Average-case soundness”

“Worst-case soundness”
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satisfy every test.
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written as “pseudo-probabilities” over “correct” encodings, i.e. 
.{𝖧𝖺𝖽(w̃)}w∈{0,1}n
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…

’s can be 
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Require 
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∑
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p̃i = 1

 corresponds to the marginals.DQ

Let  be the set of  
such that  on  is . 
SQ,A i ∈ {1,…,2n}

𝖧𝖺𝖽(w̃i) Q A

Then,
.Pr[A ← DQ] = ∑

i∈SQ,AQ

p̃i

Local views look “real”: These 
probabilities will be in [0, 1]
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Real Proof Sketch
• Step 2: If , then every encoding fails some satisfiability test.x ∉ ℒ

• Issue: Might not be observable, because pseudo-probabilities can be 
negative.

𝖧𝖺𝖽(w̃1)

𝖧𝖺𝖽(w̃2)

𝖧𝖺𝖽(w̃2n)

p̃2

p̃1

p̃2n

…

’s can be 
negative! 
Require 

.

p̃i

∑
i

p̃i = 1

 corresponds to the marginals.DQ

Fix (high-level):  
Use Hadamard encoding to read 
“random linear combinations of 

the satisfiability tests”. 


Use careful counting.
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Summary
• In this work: We show a way around the “non-signaling barrier” and 

establish a new pathway towards constructing SNARGs for NP.

• We relax the requirement in two ways:

• We allow for exponential-length PCPs.

• We relax to soundness requirement to “weak soundness”.

• Candidate construction under a conjecture.

• Open question: Does there exist a NS PCP with weak soundness?
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Oversimplified counterexample
• Language: Graph 3-Colouring


• PCP string: 3-colouring of the graph


• Verifier: Check a random edge (v1, v2). Catches with probability .1/ |E |

[Dwork-Landberg-Naor-Nissim-Reingold ’04]

v1 v2

c1 c2

Issue: Prover is not “committed” to 
any single PCP string!


