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Lattice problems that are conjectured
hard against quantum computers:

- Short vector problems (SVP)

- Short integer solution (SIS)

- Learning with errors (LWE)

Are they really hard
against guantum
computers?




R

Is Learning with Error (LWE) problem in the complexity class BQP?

The Learning with Error (LWE) problem is believed to be in the complexity class BQP, but d7 &P
this has not been proven. BQP stands for "Bounded-Error Quantum Polynomial" and is the

class of decision problems solvable by a quantum computer in polynomial time, with an

error probability of at most 1/3 for all instances. The LWE problem is a mathematical

problem in cryptography that involves solving a system of linear equations over a finite

field. It is believed to be computationally hard for classical computers, but can be solved

efficiently on a quantum computer.

Thus spoke ChatGPT in 2022



Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S| LWE> for certain error amplitudes
using “filtering” [Chen, Liu, Zhandry 22]

S|LWE> for Gaussian amplitudes: algorithms and hardness
[Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in https://eprint.iacr.org/2024/555.pdf



What is the learning with errors problem (LWE)?
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What is the learning with errors problem (LWE)?

s=| 115,155, 5, ] is the secret vector.

You are given an oracle O_s( ). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
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What is the learning with errors problem (LWE)?

s=[sl,52,

S, S, ] is the secret vector.

You are given an oracle O_s( ). Over one click, returns a random
linear combination of the secret, plus a small amount of noize

(think of = as + or - a small number)

34s, +12s,+39s,+16s, = 38
63s, +29s. +17s.+ 7s,=22
9s.+31s,+52s,+14s, = 1
54s, +18s,+43s,+61s, =59
19s. +27s,+53s,+13s, =15

4 4 a4 a4 a4
N D N NN DN
W W W wWw w
~ A~ B~ BB

24S1+5082+ 333+36S4z58

mod 67

LWE: given the coefficients, the answers, find the secret vector.



What is learning without errors?

34s,+12s. +39s_+16s, =38

635, +295, +175s, + 75, =22
9s, + 31 32+5233+14s4 1
54s1+1832+4333+61s4—59 mod 67
1931+2732+5333+1334—15

24s,+90s,+ 3s,+36s,=>58
[51'52' S, S, ] is the secret vector.

Learning without errors is easy: Gaussian elimination.



Learning with errors [ Regev 2009 ]

s=] S11S,s S, ] is the secret vector.

Given samples of the form

a,, ¥y =s-a,+e modq e <---

17

a y,=s-a_ +¢e_ modqg

m )

Goal: find the secret vector (or the error vector).

Typical parameters: g = O(n?), m = poly(n), s >= 2*sqrt(n)



Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S|LWE> for certain error
amplitudes using “filtering” [Chen, Liu, Zhandry 22]
S|LWE> for Gaussian amplitudes: algorithms and
hardness [Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in
https://eprint.iacr.org/2024/555.pdf



Approximate Shortest Vector Problem
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Approximate Shortest Vector Problem

/
/ obviousTl[Ajtai%]
[ Regev02] «

/ Shortest Integer
/ Solution
/ R4
./' /.'[ Regev 02 ]
/ /7
p s
7

(extrapolated) ., . Learning with
Dihedral Coset [ BKSW 18 ] Errors

Idea O: if you solve one of the LWE-complete problems,
you solve all of them.



O ldea 1: Solving decisional
© ~ LWE:givenA,y,
distinguish whether
(1) vyis like sA+e, or
(2) yisrandom

O

O
O

L={z=As mod g forsomes }

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)
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balls around L
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If y = As+e, then the
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the overlap is small.
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ldea:

1. prepare a uniform
superposition of
balls around L

2. Shift all balls by y
If y = As+e, then the
overlap is large;

If y is random, then
the overlap is small.

Problem: don’t know
how to do Step 1.
L={z=As mod g forsomes } 3

A very intuitive quantum ide
decisional LWE (thatis not intu



Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS.

(Solving SIS also implies solving approximate lattice
problems in general [Ajtai 96])

Basic idea 2 was initially due to [Regev 09], and later used by

(1) Stehle et al. [SSTX 09], Chen et al. [CLZ 22], Debris-Alazard et
al. [DFS 24] in different lattice reductions/algorithms;

(2) [Poremba 23], [Bartusek, Khurana, Poremba 23], ... for proof
of deletion from lattices

(3) Extended to coding problems [Yamakawa, Zhandry 22],
[Debris-Alazard, Remaud, Tillich 24], [Jordan et al 25], [Chailloux,
Tillich 25], ..., promising for showing quantum advantages.



Short integer solution (SIS)

public matrix

X| =0 modq
(q = poly(n))

WShort preimage

Short integer solution [Ajtai 96]:

Given a random matrix A, find a non-zero vector x such that

Ax=0modq & [x]| <B forsome B<q



Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> >ef(e)le> (think of fas Gaussian)
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Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> Yef(e)|e>

Compute +sA in the second register:

1: >s|s> Yef(e)|sA+e>

Uncompute the first register by solving LWE:

2: s 10> Yef(e)|sA+e>
_ZsZef(e |sA+e>

Take quantum Fourier transform:

3: Yz)syef(e)exp(<sA+e, z>/q )|z >
= Yz yef(e)exp(<e, z>/q ) dsexp(<sAz>/q )|z >
= Zzs.t.Az=O FT(f)(Z/Q) |Z >



Solve | LWE> |
— [CLZ 22]




Solve | Learning with errors > ( S|LWE>)

s=] S11S,s S, ] is the secret vector.

Given quantum samples of the form

a, |ly>= > [0..-1] fle) |s-a +e modqg>

am’ | ym> - Z €[0...g-1] f(em) | > am + em mod q->

This is all we need in
1: s [s>Yef(e)|sA+e> —>2:>s [0>Def(e)|sA+e>



Solve | Learning with errors > ( S|LWE>)

s=] S11S,s S, ] is the secret vector.

Given quantum samples of the form

a,, | y,> = Zele[o...q-l] f(el) | s a, +e, mod q >

am’ | ym> = ZemE[O...q-l] f(em) | > am t em mod q->

Questions:
1. What can we say about algorithms for S| LWE>?
2. What can we say about the hardness of S| LWE>?



Solve | Learning with errors > ( S|LWE>)

s=] S11S,s S, ] is the secret vector.

Given quantum samples of the form

a, |ly>= > [0..-1] fle) |s-a +e modqg>

am’ | ym> - Z €[0...g-1] f(em) | > am + em mod q->

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zg and m is a sufficiently large
polynomial. (E.g., when f is the bounded uniform distribution)
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Gaussian Laplacian Bounded uniform sin(x)/x

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq., or the DFT of f is
non-negligible over Zq except for constantly many positions.




Application: solve a variant of

SIS with infinity norm bound DFT(f)
for some parameters.

sin(x)/x

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq., or the DFT of f is
non-negligible over Zq except for constantly many positions.




Short integer solution (where x is measured by its infinity norm)

=0 modq
(g = poly(n))

-

m = (g-c)°n°q log g

CLZ22: When A is very wide, can find an x with a
non-trivial infinite norm in quantum polynomial time.

Ax=0modq & |x|_<(qg-c)/2




How to understand an S|LWE> sample?

a, |y>= ZeE[O...q-l] fle) | s-a+e modg>

| y >is avectorin C%centeredat S - a



Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

Forany t € [0...g-1],

denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

In a g-dimensional space:

|h(t+2) >



Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

Forany t € [0...g-1],

denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

Define a matrix

(R V¥ | R— NICE

/ |h(t+1) >
[ ~weeeee- h(t+g-1) ) -] /

|h(t+2) >




Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

Forany t € [0...g-1],

denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

Take normalized gram-schmidt to make it unitary

e (t) -eeeeeeee |
[ - NGS( h(t+1) ) -] AIN(t)>
| - NGS(h(t+2) ) -] NGS(|h(t+1) >)
IL -
[ - NGS( h(t+q-1) ) ] ’

y

NGS(|h(t+2) >)



Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

1. Pick a random t € [0...g-1],
Denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

2. Define a unitary matrix
Ut - ZIE[O...q—l] | | > < NGS( h(t+|) ) | (NGS = Normalized Gram-Schmidt)

*Ih(t) >

NGS(|h(t+1) >)
-

/
/

y
NGS(|h(t+2) >)



Idea of guessing S - a

a, |y>-= ZeE[O...q-ll fle) | s-a+e modqg>

1. Pick a random t € [0...g-1],
Denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

2. Define a unitary matrix
Ut - ZiE[O...q—l] | | > < NGS( h(t+|) ) | (NGS = Normalized Gram-Schmidt)

3. (filtering) Apply U _on | y >, measure and get the result z
If z=0, we learned nothing.

If z=1, we know s-a I=t, since if s-a =t, zmust =0.

If z=2, we knows-a!l=tands-al=t+l.



3. (filtering) Apply U,_on | v >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s-a I=t, since if s-a =t, zmust =0.
If z=2, we know s-al=tands-a l=t+1.

4.1f z = g-1, then we guess one of s-a. correctly. With n correct
guess, we can recover s by Gaussian elimination.

A |h(t) >
NGS(|h(t+1) >)

L - - >
|h(s-a)>/
/

y
NGS(|h(t+2) >)




3. (filtering) Apply U,_on | v >, measure and get the result z
If z=0, we learned nothing.

If z=1, we know s-a I=t, since if s-a =t, zmust =0.

If z=2, we know s-al=tands-a l=t+1.

4.1f z = g-1, then we guess one of s-a. correctly. With n correct
guess, we can recover s by Gaussian elimination.

A |h(t) >

Q: How about the success probability?

A: Depends on the noise distribution f. NGS(|h(t+1) >)

s
|h(s-a)>/
/

y
NGS(|h(t+2) >)
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Solve | Learning with errors > ( S|LWE>)

s=] S11S,s S, ] is the secret vector.

Given quantum samples of the form

a,, | y,> = > S f(ej) | s a +e mod g >

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zg and m is a sufficiently large
polynomial. (E.g., when f is the bounded uniform distribution).

[Debris-Alazard, Fallahpour, Stehlé 24]:
A better poly time quantum algorithm for the setting above, i.e.,

when the DFT of f is non-negligible over Zq.



Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S|LWE> for certain error
amplitudes using “filtering” [Chen, Liu, Zhandry 22]
S|LWE> for Gaussian amplitudes: algorithms and
hardness [Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in
https://eprint.iacr.org/2024/555.pdf



Subexponential time algorithms for S| LWE>:

s=] S11S,s S, ] is the secret vector.

Given quantum samples of the form

a,, | y;> = > 10..0-1] f(ej) | s - a +e mod q >

[CHLLT 25] A subexponential time quantum algorithm for solving
S|LWE> with completely known amplitudes.

(the amplitude f can be anything as long as DFT(f) has more than one
non-negligible points, including Gaussian)



Subexponential time algorithms for S| LWE>:

s=] S11S,s S, ] is the secret vector.

Given quantum samples of the form

a,, | y;> = > 10..0-1] f(ej) | s - a +e mod q >

[CHLLT 25] A subexponential time quantum algorithm for solving
S|LWE> with completely known amplitudes.
ldea: Apply QFT on the S| LWE> samples
-> ¥ DFT(f)(k)e>™ k<a/a | k>
-> Apply quantum rejection sampling to get |0> + e2™<@%/4 | 1>
-> Use Kuperberg sieve: given a, |0> + e?™<@%>/d | 1> find s
(needs exp( sqrt{n} ) many samples)




Summary of [CHLLT 25]:

S|LWE> with completely known amplitudes (Gaussian or others):
solvable by subexponential time quantum algorithms.

S| LWE> with Gaussian amplitudes with unknown phases:
guantumly as hard as standard LWE or GapSVP.

An improvement of Bai, Jangir, Kirshanova, Ngo, Youmans.
[BJKNY25]:

S|LWE> with completely known Gaussian amplitudes is solvable by
guasipolynomial time quantum algorithms, when the modulus is a
power of two.
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Experience from before:
we need a good
amplitude function!




f(x) = exp( -7 (a+bi) x?)
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Gaussian with complex variance
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Complex Gaussian

('cg, withr, s, c,q=", 54, 4.0001, 100, 200)
('s"2 rM4/(s"4+r74) ="', 16.0003182430807)
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Takeaway from Complex Gaussian:
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For f(x) = exp( -1 (1/r?+i/T) x?), it is easy to find the center
of the state mod T. [CHLLT 25]

The complex Gaussian amplitude is useful for reducing
LWE from a large modulus to a smaller modulus.
How to use it for solving standard LWE: still don’t know.
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LWE with Quantum Amplitudes

Yilei Chen

Thanks for your time!



