LWE with Quantum Amplitudes

Yilei Chen

Tsinghua University

Lattice problems that are conjectured
hard against quantum computers:

- Short vector problems (SVP)

- Short integer solution (SIS)

- Learning with errors (LWE)

Are they really hard
against guantum
computers?

R

Is Learning with Error (LWE) problem in the complexity class BQP?

The Learning with Error (LWE) problem is believed to be in the complexity class BQP, but d7 &P
this has not been proven. BQP stands for "Bounded-Error Quantum Polynomial" and is the

class of decision problems solvable by a quantum computer in polynomial time, with an

error probability of at most 1/3 for all instances. The LWE problem is a mathematical

problem in cryptography that involves solving a system of linear equations over a finite

field. It is believed to be computationally hard for classical computers, but can be solved

efficiently on a quantum computer.

Thus spoke ChatGPT in 2022

Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S| LWE> for certain error amplitudes
using “filtering” [Chen, Liu, Zhandry 22]

S|LWE> for Gaussian amplitudes: algorithms and hardness
[Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in https://eprint.iacr.org/2024/555.pdf

What is the learning with errors problem (LWE)?

What is the learning with errors problem (LWE)?

s=| 115,155, 5,] is the secret vector.
You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize

What is the learning with errors problem (LWE)?

s=| 115,155, 5,] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
(think of = as + or - a small number)

34s1+1232+3933+1634z38

mod 67

What is the learning with errors problem (LWE)?

s=| 115,155, 5,] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
(think of = as + or - a small number)

34s1+1232+3933+1634z38
6331+2932+1733+ 7s4z22

mod 67

What is the learning with errors problem (LWE)?

s=[sl,52,

S, S,] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize

(think of = as + or - a small number)

34s, +12s,+39s,+16s, = 38
63s, +29s. +17s.+ 7s,=22
9s.+31s,+52s,+14s, = 1
54s, +18s,+43s,+61s, =59
19s. +27s,+53s,+13s, =15

4 4 a4 a4 a4
N D N NN DN
W W W wWw w
~ A~ B~ BB

24S1+5082+ 333+36S4z58

mod 67

LWE: given the coefficients, the answers, find the secret vector.

What is learning without errors?

34s,+12s. +39s_+16s, =38

635, +295, +175s, + 75, =22
9s, + 31 32+5233+14s4 1
54s1+1832+4333+61s4—59 mod 67
1931+2732+5333+1334—15

24s,+90s,+ 3s,+36s,=>58
[51'52' S, S,] is the secret vector.

Learning without errors is easy: Gaussian elimination.

Learning with errors [Regev 2009]

s=] S11S,s S,] is the secret vector.

Given samples of the form

a,, ¥y =s-a,+e modq e <---

17

a y,=s-a_ +¢e_ modqg

m)

Goal: find the secret vector (or the error vector).

Typical parameters: g = O(n?), m = poly(n), s >= 2*sqrt(n)

Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S|LWE> for certain error
amplitudes using “filtering” [Chen, Liu, Zhandry 22]
S|LWE> for Gaussian amplitudes: algorithms and
hardness [Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in
https://eprint.iacr.org/2024/555.pdf

Approximate Shortest Vector Problem

/
/ obviousTl[Ajtai%]
[Regev02] «

/ Shortest Integer
/ Solution
/ K4
./' /.’[Regev 02]
/ /’
p v

/7
(extrapolated) ., . Learning with
Dihedral Coset [BKSW 18] Errors
A classical g AreducestoB,i.e, if thereisan

—n mmm o mm n mm w _>

guantum Alg for B, there is an Alg for A

Approximate Shortest Vector Problem

/
/ obviousTl[Ajtai%]
[Regev02] «

/ Shortest Integer
/ Solution
/ R4
./' /.'[Regev 02]
/ /7
p s
7

(extrapolated) ., . Learning with
Dihedral Coset [BKSW 18] Errors

Idea O: if you solve one of the LWE-complete problems,
you solve all of them.

O ldea 1: Solving decisional
© ~ LWE:givenA,y,
distinguish whether
(1) vyis like sA+e, or
(2) yisrandom

O

O
O

L={z=As mod g forsomes }

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

~ LWE

O Random
O

L={z=As mod g forsomes }

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

|dea:

1. prepare a uniform
superposition of
balls around L

ONONS
O O "

L={z=As mod g forsomes }

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

|dea:

1. prepare a uniform
superposition of
balls around L

2. Shift all balls by y
If y = As+e, then the
overlap is large;

If y is random, then
the overlap is small.

L={z=As mod g forsomes }

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

ldea:

1. prepare a uniform
superposition of
balls around L

2. Shift all balls by y
If y = As+e, then the
overlap is large;

If y is random, then
the overlap is small.

Problem: don’t know
how to do Step 1.
L={z=As mod g forsomes } 3

A very intuitive quantum ide
decisional LWE (thatis not intu

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS.

(Solving SIS also implies solving approximate lattice
problems in general [Ajtai 96])

Basic idea 2 was initially due to [Regev 09], and later used by

(1) Stehle et al. [SSTX 09], Chen et al. [CLZ 22], Debris-Alazard et
al. [DFS 24] in different lattice reductions/algorithms;

(2) [Poremba 23], [Bartusek, Khurana, Poremba 23], ... for proof
of deletion from lattices

(3) Extended to coding problems [Yamakawa, Zhandry 22],
[Debris-Alazard, Remaud, Tillich 24], [Jordan et al 25], [Chailloux,
Tillich 25], ..., promising for showing quantum advantages.

Short integer solution (SIS)

public matrix

X| =0 modq
(q = poly(n))

WShort preimage

Short integer solution [Ajtai 96]:

Given a random matrix A, find a non-zero vector x such that

Ax=0modq & [x]| <B forsome B<q

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> >ef(e)le> (think of fas Gaussian)

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> Yef(e)|e>
Compute +sA in the second register:
1: >s|s> Yef(e)|sA+e>

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> Yef(e)|e>
Compute +sA in the second register:
1: >s|s> Yef(e)|sA+e>
Uncompute the first register by solving LWE:
2:>s|0> HYef(e)|sA+e>
= Zs Zef(é)lSA+e >

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> Yef(e)|e>
Compute +sA in the second register:
1: >s|s> Yef(e)|sA+e>
Uncompute the first register by solving LWE:
2:>s|0> HYef(e)|sA+e>
= Zs Zef(E)lSA+e >
Take quantum Fourier transform:
3: Zz Zs Ze f(e)exp(<sA+e, Z>/q)|Z >
= Yz yef(e)exp(<e, z>/q) Dsexp(<sAz>/q)|z>
= Zzs.t.Az=0 FT(f)(Z/Q) |Z >

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0:>s|s> Yef(e)|e>

Compute +sA in the second register:

1: >s|s> Yef(e)|sA+e>

Uncompute the first register by solving LWE:

2: s 10> Yef(e)|sA+e>
_ZsZef(e |sA+e>

Take quantum Fourier transform:

3: Yz)syef(e)exp(<sA+e, z>/q)|z >
= Yz yef(e)exp(<e, z>/q) dsexp(<sAz>/q)|z >
= Zzs.t.Az=O FT(f)(Z/Q) |Z >

Solve | LWE> |
— [CLZ 22]

Solve | Learning with errors > (S|LWE>)

s=] S11S,s S,] is the secret vector.

Given quantum samples of the form

a, |ly>= > [0..-1] fle) |s-a +e modqg>

am’ | ym> - Z €[0...g-1] f(em) | > am + em mod q->

This is all we need in
1: s [s>Yef(e)|sA+e> —>2:>s [0>Def(e)|sA+e>

Solve | Learning with errors > (S|LWE>)

s=] S11S,s S,] is the secret vector.

Given quantum samples of the form

a,, | y,> = Zele[o...q-l] f(el) | s a, +e, mod q >

am’ | ym> = ZemE[O...q-l] f(em) | > am t em mod q->

Questions:
1. What can we say about algorithms for S| LWE>?
2. What can we say about the hardness of S| LWE>?

Solve | Learning with errors > (S|LWE>)

s=] S11S,s S,] is the secret vector.

Given quantum samples of the form

a, |ly>= > [0..-1] fle) |s-a +e modqg>

am’ | ym> - Z €[0...g-1] f(em) | > am + em mod q->

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zg and m is a sufficiently large
polynomial. (E.g., when f is the bounded uniform distribution)

. .
. .
. .
..........

DFT(f) -

. .
. .
. .
®®c0c00000000®

Gaussian Laplacian Bounded uniform sin(x)/x

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq., or the DFT of f is
non-negligible over Zq except for constantly many positions.

Application: solve a variant of

SIS with infinity norm bound DFT(f)
for some parameters.

sin(x)/x

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq., or the DFT of f is
non-negligible over Zq except for constantly many positions.

Short integer solution (where x is measured by its infinity norm)

=0 modq
(g = poly(n))

-

m = (g-c)°n°q log g

CLZ22: When A is very wide, can find an x with a
non-trivial infinite norm in quantum polynomial time.

Ax=0modq & |x|_<(qg-c)/2

How to understand an S|LWE> sample?

a, |y>= ZeE[O...q-l] fle) | s-a+e modg>

| y >is avectorin C%centeredat S - a

Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

Forany t € [0...g-1],

denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

In a g-dimensional space:

|h(t+2) >

Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

Forany t € [0...g-1],

denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

Define a matrix

(R V¥ | R— NICE

/ |h(t+1) >
[~weeeee- h(t+g-1)) -] /

|h(t+2) >

Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

Forany t € [0...g-1],

denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

Take normalized gram-schmidt to make it unitary

e (t) -eeeeeeee |
[- NGS(h(t+1)) -] AIN(t)>
| - NGS(h(t+2)) -] NGS(|h(t+1) >)
IL -
[- NGS(h(t+q-1))] ’

y

NGS(|h(t+2) >)

Idea of guessing S - a

a, |y>-= ZeE[O...q-I] fle) | s-a+e modqg>

1. Pick a random t € [0...g-1],
Denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

2. Define a unitary matrix
Ut - ZIE[O...q—l] | | > < NGS(h(t+|)) | (NGS = Normalized Gram-Schmidt)

*Ih(t) >

NGS(|h(t+1) >)
-

/
/

y
NGS(|h(t+2) >)

Idea of guessing S - a

a, |y>-= ZeE[O...q-ll fle) | s-a+e modqg>

1. Pick a random t € [0...g-1],
Denote |h(t) >:=) 1 fle) |t+e modg>

e€[0...g-

2. Define a unitary matrix
Ut - ZiE[O...q—l] | | > < NGS(h(t+|)) | (NGS = Normalized Gram-Schmidt)

3. (filtering) Apply U _on | y >, measure and get the result z
If z=0, we learned nothing.

If z=1, we know s-a I=t, since if s-a =t, zmust =0.

If z=2, we knows-a!l=tands-al=t+l.

3. (filtering) Apply U,_on | v >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s-a I=t, since if s-a =t, zmust =0.
If z=2, we know s-al=tands-a l=t+1.

4.1f z = g-1, then we guess one of s-a. correctly. With n correct
guess, we can recover s by Gaussian elimination.

A |h(t) >
NGS(|h(t+1) >)

L - - >
|h(s-a)>/
/

y
NGS(|h(t+2) >)

3. (filtering) Apply U,_on | v >, measure and get the result z
If z=0, we learned nothing.

If z=1, we know s-a I=t, since if s-a =t, zmust =0.

If z=2, we know s-al=tands-a l=t+1.

4.1f z = g-1, then we guess one of s-a. correctly. With n correct
guess, we can recover s by Gaussian elimination.

A |h(t) >

Q: How about the success probability?

A: Depends on the noise distribution f. NGS(|h(t+1) >)

s
|h(s-a)>/
/

y
NGS(|h(t+2) >)

DFT(f)

GS
length

0.

S

03

07 07 05
.
06 06 04
05 05 03
. .
04 * ° 04 02
oo .
. .
03[. 03 01
. .
o’ o’
. . 0.2 - e 02 0.0 = ° * °
P
.
. 5 0.1 ° R . ° 01 -0.1 . °e
. .
. .
L] 0.0 b ®ec000000?® L 00 02
5 10 15 20 2 30 0 5 10 15 20 25 30 5 10 15 20 2 30 0 10 15 20 25 30
07 05 07
.
06 04 06
.
05 03 05
. . . .
04 02 . 04
.
. .
03 01 03
. .
& - % o’ .
° ° 02 00 " * 02
B
¥ . P -
° ¢ 01 . . 0.1 oo . o1
. . 2 . e
o, A “®cees0n0cnncene®’
00 -02 00
5 10 15 20 2 30 0 5 10 15 20 25 30 5 10 15 20 2 30 10 15 20 2 30
. 10f 10 10
08 08)8
06 06)6
ceeess,
e e, LR)
04 04 .)4
. .
R R .
02 . 02)2
. . .
.
..,
00 00)0
0 5 15 20 25 30 0 5 10 15 20 25 30 5 10 15 20 25 30 10 15 20 25 30

Gaussian

Laplacian

Bounded uniform

sin(x)/x

Solve | Learning with errors > (S|LWE>)

s=] S11S,s S,] is the secret vector.

Given quantum samples of the form

a,, | y,> = > S f(ej) | s a +e mod g >

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zg and m is a sufficiently large
polynomial. (E.g., when f is the bounded uniform distribution).

[Debris-Alazard, Fallahpour, Stehlé 24]:
A better poly time quantum algorithm for the setting above, i.e.,

when the DFT of f is non-negligible over Zq.

Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S|LWE> for certain error
amplitudes using “filtering” [Chen, Liu, Zhandry 22]
S|LWE> for Gaussian amplitudes: algorithms and
hardness [Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in
https://eprint.iacr.org/2024/555.pdf

Subexponential time algorithms for S| LWE>:

s=] S11S,s S,] is the secret vector.

Given quantum samples of the form

a,, | y;> = > 10..0-1] f(ej) | s - a +e mod q >

[CHLLT 25] A subexponential time quantum algorithm for solving
S|LWE> with completely known amplitudes.

(the amplitude f can be anything as long as DFT(f) has more than one
non-negligible points, including Gaussian)

Subexponential time algorithms for S| LWE>:

s=] S11S,s S,] is the secret vector.

Given quantum samples of the form

a,, | y;> = > 10..0-1] f(ej) | s - a +e mod q >

[CHLLT 25] A subexponential time quantum algorithm for solving
S|LWE> with completely known amplitudes.
ldea: Apply QFT on the S| LWE> samples
-> ¥ DFT(f)(k)e>™ k<a/a | k>
-> Apply quantum rejection sampling to get |0> + e2™<@%/4 | 1>
-> Use Kuperberg sieve: given a, |0> + e?™<@%>/d | 1> find s
(needs exp(sqrt{n}) many samples)

Summary of [CHLLT 25]:

S|LWE> with completely known amplitudes (Gaussian or others):
solvable by subexponential time quantum algorithms.

S| LWE> with Gaussian amplitudes with unknown phases:
guantumly as hard as standard LWE or GapSVP.

An improvement of Bai, Jangir, Kirshanova, Ngo, Youmans.
[BJKNY25]:

S|LWE> with completely known Gaussian amplitudes is solvable by
guasipolynomial time quantum algorithms, when the modulus is a
power of two.

Plan of the talk

Introducing the LWE problem

Some basic ideas of quantumly solving LWE/SIS
Quantumly solving S|LWE> for certain error
amplitudes using “filtering” [Chen, Liu, Zhandry 22]
S|LWE> for Gaussian amplitudes: algorithms and
hardness [Chen, Hu, Liu, Luo, Tu 25]

Complex Gaussian in
https://eprint.iacr.org/2024/555.pdf

Experience from before:
we need a good
amplitude function!

f(x) = exp(-7 (a+bi) x?)

05
0.0
.5

bbb

-

Gaussian with complex variance

1.0

0.5}

0.0

—-0.5}

—=1:.0
0

Complex Gaussian

('cg, withr, s, c,q =", 54, 3.00001, 100, 200)
('s"2 r*4/(sh4+rM4) =, 8.999974265319997)

50

100

150

200

15

1.0}

0.5}

0.0

—-1.0f

=15
0

&d

50

100

150

200

Complex Gaussian

('cg, withr, s, c,q=", 54, 4.0001, 100, 200)
('s"2 rM4/(s"4+r74) ="', 16.0003182430807)

1.0

0.5F

0.0

50

100

150

200

0.8

0.6 |

0.4}

0.2

50

100

150

200

Takeaway from Complex Gaussian:

1.0

0.5}

0.0

-0.5}

=1.0
0

—

ﬂ

h—

50

100

150

200

0.8

0.6 |-

0.4}

0.2

0.0

-0.2
-0.4
—-0.6
—0.8}

—=1:0
0

For f(x) = exp(-1 (1/r?+i/T) x?), it is easy to find the center
of the state mod T. [CHLLT 25]

The complex Gaussian amplitude is useful for reducing
LWE from a large modulus to a smaller modulus.
How to use it for solving standard LWE: still don’t know.

50

100

150

200

LWE with Quantum Amplitudes

Yilei Chen

Thanks for your time!

