
LWE with Quantum Amplitudes

Yilei Chen

Tsinghua University



Lattice problems that are conjectured 
hard against quantum computers:
- Short vector problems (SVP)
- Short integer solution (SIS)
- Learning with errors (LWE)

Are they really hard 
against quantum 

computers?



Thus spoke ChatGPT in 2022



Plan of the talk
- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error amplitudes 

using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and hardness 

[Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in https://eprint.iacr.org/2024/555.pdf



What is the learning with errors problem (LWE)?



What is the learning with errors problem (LWE)?

s = [ s
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 ] is the secret vector.

You are given an oracle O_s( ). Over one click, returns a random 
linear combination of the secret, plus a small amount of noize
(think of ≈ as + or - a small number)
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What is the learning with errors problem (LWE)?

34 s1 + 12 s2 + 39 s3 + 16 s4 ≈ 38
63 s1 + 29 s2 + 17 s3 +   7 s4 ≈ 22
  9 s1 + 31 s2 + 52 s3 + 14 s4 ≈   1
54 s1 + 18 s2 + 43 s3 + 61 s4 ≈ 59
19 s1 + 27 s2 + 53 s3 + 13 s4 ≈ 15

…
24 s1 + 50 s2 +   3 s3 + 36 s4 ≈ 58

mod 67

s = [ s
1
 , s

2 
, s

3
 , s

4
 ] is the secret vector.

You are given an oracle O_s( ). Over one click, returns a random 
linear combination of the secret, plus a small amount of noize
(think of ≈ as + or - a small number)

LWE: given the coefficients, the answers, find the secret vector.



What is learning without errors?

34 s1 + 12 s2 + 39 s3 + 16 s4 = 38
63 s1 + 29 s2 + 17 s3 +   7 s4 = 22
  9 s1 + 31 s2 + 52 s3 + 14 s4 =   1
54 s1 + 18 s2 + 43 s3 + 61 s4 = 59
19 s1 + 27 s2 + 53 s3 + 13 s4 = 15

…
24 s1 + 50 s2 +   3 s3 + 36 s4 = 58

mod 67

[ s
1
 , s

2 
, s

3
 , s

4
 ] is the secret vector.

Learning without errors is easy: Gaussian elimination.



Learning with errors [ Regev 2009 ]

a1 ,   y1  = s ⋅ a1 + e1   mod q

…

am ,   ym = s ⋅ am + em  mod q

s = [ s
1
 , s

2 
, ... , s

n
 ] is the secret vector.

Given samples of the form 

Goal: find the secret vector (or the error vector).

Typical parameters: q = O(n2), m = poly(n), s >= 2*sqrt(n)

e <---

exp(- x2/s2)



Plan of the talk

- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error 

amplitudes using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and 

hardness [Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in 

https://eprint.iacr.org/2024/555.pdf



Shortest Integer 
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(extrapolated) 
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Learning with 
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A B A reduces to B, i.e., if there is an 
Alg for B, there is an Alg for A
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quantum
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[ Regev 02 ]

obvious

obvious
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Approximate Shortest Vector Problem 



Shortest Integer 
Solution

(extrapolated) 
Dihedral Coset

Learning with 
Errors

[ Ajtai 96 ]

Idea 0: if you solve one of the LWE-complete problems, 
you solve all of them. 

[ Regev 02 ]

[ BKSW 18 ]

[ Regev 05 ]

[ SSTX 09 ]

[ Regev 02 ]

obvious

obvious

obvious

Approximate Shortest Vector Problem 



A very intuitive quantum idea of solving 
decisional LWE (that is not intuitively working)

L = { z = As mod q for some s }

Idea 1: Solving decisional 
LWE: given A, y, 
distinguish whether 

(1) y is like sA+e, or 
(2) y is random



LWE

Random

L = { z = As mod q for some s }

A very intuitive quantum idea of solving 
decisional LWE (that is not intuitively working)
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A very intuitive quantum idea of solving 
decisional LWE (that is not intuitively working)



L = { z = As mod q for some s }

Idea: 
1. prepare a uniform 
superposition of 
balls around L
2. Shift all balls by y
If y = As+e, then the 
overlap is large; 
If y is random, then 
the overlap is small. 

A very intuitive quantum idea of solving 
decisional LWE (that is not intuitively working)



L = { z = As mod q for some s }

Idea: 
1. prepare a uniform 
superposition of 
balls around L
2. Shift all balls by y
If y = As+e, then the 
overlap is large; 
If y is random, then 
the overlap is small. 

Problem: don’t know 
how to do Step 1. 

A very intuitive quantum idea of solving 
decisional LWE (that is not intuitively working)



Basic idea 2: If there is a quantum algorithm that solves 
LWE, then there is a quantum algorithm that solves SIS. 

(Solving SIS also implies solving approximate lattice 
problems in general [Ajtai 96])

Basic idea 2 was initially due to [Regev 09], and later used by 
(1) Stehle et al. [SSTX 09], Chen et al. [CLZ 22], Debris-Alazard et 
al. [DFS 24] in different lattice reductions/algorithms;
(2) [Poremba 23], [Bartusek, Khurana, Poremba 23], … for proof 
of deletion from lattices
(3) Extended to coding problems [Yamakawa, Zhandry 22], 
[Debris-Alazard, Remaud, Tillich 24], [Jordan et al 25], [Chailloux, 
Tillich 25], …, promising for showing quantum advantages. 



A

Short integer solution [Ajtai 96]: 

Given a random matrix A, find a non-zero vector x such that 

Ax = 0 mod q    &   |x|
2
<B   for some B<q

 =  0  mod qx

public matrix      

Short integer solution (SIS)

Short preimage

n

n log n
(q = poly(n))



Basic idea 2: If there is a quantum algorithm that solves 
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s >   ∑e f(e)|e >     ( think of f as Gaussian )



Basic idea 2: If there is a quantum algorithm that solves 
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Compute +sA in the second register:
1: ∑s |s >   ∑e f(e)|sA + e >   
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0: ∑s |s >   ∑e f(e)|e >   

Compute +sA in the second register:
1: ∑s |s >   ∑e f(e)|sA + e >   

Uncompute the first register by solving LWE:
2: ∑s |0 >   ∑e f(e)|sA + e >   
  = ∑s ∑e f(e)|sA + e >  

Take quantum Fourier transform:
3:   ∑z ∑s ∑e f(e)exp( <sA+e, z>/q  )|z >   
  =  ∑z ∑e f(e)exp( <e, z>/q  ) ∑s exp( <sAz>/q  )|z >   
  =  ∑z s.t. Az = 0  FT(f)(z/q) |z >   



Basic idea 2: If there is a quantum algorithm that solves 
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s >   ∑e f(e)|e >   

Compute +sA in the second register:
1: ∑s |s >   ∑e f(e)|sA + e >   

Uncompute the first register by solving LWE:
2: ∑s |0 >   ∑e f(e)|sA + e >   
  = ∑s ∑e f(e)|sA + e >  

Take quantum Fourier transform:
3:   ∑z ∑s ∑e f(e)exp( <sA+e, z>/q  )|z >   
  =  ∑z ∑e f(e)exp( <e, z>/q  ) ∑s exp( <sAz>/q  )|z >   
  =  ∑z s.t. Az = 0  FT(f)(z/q) |z >   



Solve|LWE> !
— [CLZ 22]



Solve | Learning with errors >  ( S|LWE> )

a
1 

,   | y
1
> =  ∑

e1∊[0...q-1]
 f(e

1
)  | s ⋅ a

1
 + e

1
  mod q >
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a
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m
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n
 ] is the secret vector.

Given quantum samples of the form 

This is all we need in
1: ∑s |s > ∑e f(e)|sA + e >  –> 2: ∑s |0 > ∑e f(e)|sA + e >   



Solve | Learning with errors >  ( S|LWE> )
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Given quantum samples of the form 

Questions:
1. What can we say about algorithms for S|LWE>?
2. What can we say about the hardness of S|LWE>?



Solve | Learning with errors >  ( S|LWE> )
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 ] is the secret vector.

Given quantum samples of the form 

[CLZ 22] A poly time quantum algorithm that finds the secret vector 
if the DFT of f is non-negligible over Zq and m is a sufficiently large 
polynomial. (E.g., when f is the bounded uniform distribution)



Gaussian           Laplacian        Bounded uniform    sin(x)/x

f

DFT(f)

[CLZ 22] A poly time quantum algorithm that finds the secret vector 
if the DFT of f is non-negligible over Zq., or the DFT of f is 
non-negligible over Zq except for constantly many positions.



   sin(x)/x

f

DFT(f)

[CLZ 22] A poly time quantum algorithm that finds the secret vector 
if the DFT of f is non-negligible over Zq., or the DFT of f is 
non-negligible over Zq except for constantly many positions.

Application: solve a variant of 
SIS with infinity norm bound 
for some parameters.



A

CLZ22: When A is very wide, can find an x with a 
non-trivial infinite norm in quantum polynomial time. 

Ax = 0 mod q    &   |x|∞< (q-c)/2

 = 0 mod qx

Short integer solution (where x is measured by its infinity norm)

n

m = (q-c)3 nc q log q
(q = poly(n))

Recent: SIS∞ with parameters above is actually solvable 
classically [Imran, Ivanyos 24], [Kothari, O'Donnell, Wu 25]. 



a
 
,   | y > =  ∑

e∊[0...q-1]
 f(e)  | s ⋅ a + e  mod q >

| y > is a vector in Cq centered at  s ⋅ a

How to understand an S|LWE> sample?

s ⋅ a 



a
 
,   | y > =  ∑

e∊[0...q-1]
 f(e)  | s ⋅ a + e  mod q >

For any t ∊ [0...q-1], 
denote |h(t) > := ∑

e∊[0...q-1]
 f(e)  | t + e  mod q >

In a q-dimensional space:

Idea of guessing  s ⋅ a 

|h(t) >

|h(t+1) >

|h(t+2) >



a
 
,   | y > =  ∑

e∊[0...q-1]
 f(e)  | s ⋅ a + e  mod q >

For any t ∊ [0...q-1], 
denote |h(t) > := ∑

e∊[0...q-1]
 f(e)  | t + e  mod q >

Define a matrix 

[  ----------- h(t) ---------- ]    
[  --------- h(t+1) --------- ]    
[  --------- h(t+2) --------- ]  
...
[  -------- h(t+q-1) ) ------ ]    

Idea of guessing  s ⋅ a 

|h(t) >

|h(t+1) >

|h(t+2) >



a
 
,   | y > =  ∑

e∊[0...q-1]
 f(e)  | s ⋅ a + e  mod q >

For any t ∊ [0...q-1], 
denote |h(t) > := ∑

e∊[0...q-1]
 f(e)  | t + e  mod q >

Take normalized gram-schmidt to make it unitary

[  ----------- h(t) ---------- ]    
[  ---- NGS( h(t+1) ) ----- ]    
[  ---- NGS( h(t+2) ) ----- ]  
...
[  ---- NGS( h(t+q-1) ) -- ]  

Idea of guessing  s ⋅ a 

|h(t) >

NGS(|h(t+1) >)

NGS(|h(t+2) >)



a
 
,   | y > =  ∑

e∊[0...q-1]
 f(e)  | s ⋅ a + e  mod q >

1. Pick a random t ∊ [0...q-1], 
Denote |h(t) > := ∑

e∊[0...q-1]
 f(e)  | t + e  mod q >

2. Define a unitary matrix 

U
t
 = ∑

i∊[0...q-1] 
| i  > < NGS( h(t+i) ) |   (NGS = Normalized Gram-Schmidt)

Idea of guessing  s ⋅ a 

|h(t) >

NGS(|h(t+1) >)

NGS(|h(t+2) >)



a
 
,   | y > =  ∑

e∊[0...q-1]
 f(e)  | s ⋅ a + e  mod q >

1. Pick a random t ∊ [0...q-1], 
Denote |h(t) > := ∑

e∊[0...q-1]
 f(e)  | t + e  mod q >

2. Define a unitary matrix 

U
t
 = ∑

i∊[0...q-1] 
| i  > < NGS( h(t+i) ) |   (NGS = Normalized Gram-Schmidt)

3. (filtering) Apply U
t
 on | y >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s⋅a != t, since if s⋅a = t, z must =0.
If z=2, we know s⋅a != t and s⋅a != t+1. 
...
If z=q-1, we know s⋅a = t+q-1 = t-1 mod q!!!!!

Idea of guessing  s ⋅ a 



3. (filtering) Apply U
t
 on | y >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s⋅a != t, since if s⋅a = t, z must =0.
If z=2, we know s⋅a != t and s⋅a != t+1. 
...
If z=q-1, we know s⋅a = t+q-1 = t-1 mod q!!!!!

4. If z = q-1, then we guess one of  s⋅a
i
 correctly. With n correct 

guess, we can recover s by Gaussian elimination. 

NGS(|h(t+1) >)

NGS(|h(t+2) >)

|h(t) >

|h(s⋅a) >



3. (filtering) Apply U
t
 on | y >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s⋅a != t, since if s⋅a = t, z must =0.
If z=2, we know s⋅a != t and s⋅a != t+1. 
...
If z=q-1, we know s⋅a = t+q-1 = t-1 mod q!!!!!

4. If z = q-1, then we guess one of  s⋅a
i
 correctly. With n correct 

guess, we can recover s by Gaussian elimination. 

Q: How about the success probability?
A: Depends on the noise distribution f. NGS(|h(t+1) >)

NGS(|h(t+2) >)

|h(t) >

|h(s⋅a) >



Gaussian           Laplacian        Bounded uniform    sin(x)/x

f

DFT(f)

GS 
length



Solve | Learning with errors >  ( S|LWE> )

a
j 
,   | y

j
> =  ∑

ej∊[0...q-1]
 f(e

j
)  | s ⋅ a

j
 + e

j
  mod q >

s = [ s
1
 , s

2 
, ... , s

n
 ] is the secret vector.

Given quantum samples of the form 

[CLZ 22] A poly time quantum algorithm that finds the secret vector 
if the DFT of f is non-negligible over Zq and m is a sufficiently large 
polynomial. (E.g., when f is the bounded uniform distribution). 

[Debris-Alazard, Fallahpour, Stehlé 24]: 
A better poly time quantum algorithm for the setting above, i.e., 
when the DFT of f is non-negligible over Zq.



Plan of the talk

- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error 

amplitudes using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and 

hardness [Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in 

https://eprint.iacr.org/2024/555.pdf



Subexponential time algorithms for S|LWE>:

a
j 
,   | y

j
> =  ∑

ej∊[0...q-1]
 f(e

j
)  | s ⋅ a

j
 + e

j
  mod q >

s = [ s
1
 , s

2 
, ... , s

n
 ] is the secret vector.

Given quantum samples of the form 

[CHLLT 25] A subexponential time quantum algorithm for solving 
S|LWE> with completely known amplitudes.

(the amplitude f can be anything as long as DFT(f) has more than one 
non-negligible points, including Gaussian)



Subexponential time algorithms for S|LWE>:

a
j 
,   | y

j
> =  ∑

ej∊[0...q-1]
 f(e

j
)  | s ⋅ a

j
 + e

j
  mod q >

s = [ s
1
 , s

2 
, ... , s

n
 ] is the secret vector.

Given quantum samples of the form 

[CHLLT 25] A subexponential time quantum algorithm for solving 
S|LWE> with completely known amplitudes.
Idea: Apply QFT on the S|LWE> samples 
    ->  ∑

k  
 DFT(f)(k)e2π i k<a,s>/q |k>

    -> Apply quantum rejection sampling to get |0> + e2π i<a,s>/q |1> 
    -> Use Kuperberg sieve: given a, |0> + e2π i<a,s>/q |1> , find s 
         (needs exp( sqrt{n} ) many samples)



Summary of [CHLLT 25]: 

S|LWE> with completely known amplitudes (Gaussian or others):
solvable by subexponential time quantum algorithms.

S|LWE> with Gaussian amplitudes with unknown phases:
quantumly as hard as standard LWE or GapSVP.

An improvement of Bai, Jangir, Kirshanova, Ngo, Youmans. 
[BJKNY25]:

S|LWE> with completely known Gaussian amplitudes is solvable by 
quasipolynomial time quantum algorithms, when the modulus is a 
power of two. 



Plan of the talk

- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error 

amplitudes using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and 

hardness [Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in 
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Experience from before: 
we need a good 

amplitude function!



Gaussian with complex variance

f(x) = exp( -π (a+bi) x2 ) 



Complex Gaussian
('cg, with r, s, c, q = ', 54, 3.00001, 100, 200)
('s^2 r^4/(s^4+r^4) = ', 8.999974265319997)



Complex Gaussian
('cg, with r, s, c, q = ', 54, 4.0001, 100, 200)
('s^2 r^4/(s^4+r^4) = ', 16.0003182430807)



Takeaway from Complex Gaussian:

- For f(x) = exp( -π (1/r2+i/T) x2 ), it is easy to find the center 
of the state mod T. [CHLLT 25]

- The complex Gaussian amplitude is useful for reducing 
LWE from a large modulus to a smaller modulus. 

- How to use it for solving standard LWE: still don’t know. 



LWE with Quantum Amplitudes

Yilei Chen

Thanks for your time!


