
LWE with Quantum Amplitudes

Yilei Chen

Tsinghua University

Lattice problems that are conjectured
hard against quantum computers:
- Short vector problems (SVP)
- Short integer solution (SIS)
- Learning with errors (LWE)

Are they really hard
against quantum

computers?

Thus spoke ChatGPT in 2022

Plan of the talk
- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error amplitudes

using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and hardness

[Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in https://eprint.iacr.org/2024/555.pdf

What is the learning with errors problem (LWE)?

What is the learning with errors problem (LWE)?

s = [s
1
 , s

2
, s

3
 , s

4
] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
(think of ≈ as + or - a small number)

What is the learning with errors problem (LWE)?

34 s1 + 12 s2 + 39 s3 + 16 s4 ≈ 38

mod 67

s = [s
1
 , s

2
, s

3
 , s

4
] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
(think of ≈ as + or - a small number)

What is the learning with errors problem (LWE)?

34 s1 + 12 s2 + 39 s3 + 16 s4 ≈ 38
63 s1 + 29 s2 + 17 s3 + 7 s4 ≈ 22

mod 67

s = [s
1
 , s

2
, s

3
 , s

4
] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
(think of ≈ as + or - a small number)

What is the learning with errors problem (LWE)?

34 s1 + 12 s2 + 39 s3 + 16 s4 ≈ 38
63 s1 + 29 s2 + 17 s3 + 7 s4 ≈ 22
 9 s1 + 31 s2 + 52 s3 + 14 s4 ≈ 1
54 s1 + 18 s2 + 43 s3 + 61 s4 ≈ 59
19 s1 + 27 s2 + 53 s3 + 13 s4 ≈ 15

…
24 s1 + 50 s2 + 3 s3 + 36 s4 ≈ 58

mod 67

s = [s
1
 , s

2
, s

3
 , s

4
] is the secret vector.

You are given an oracle O_s(). Over one click, returns a random
linear combination of the secret, plus a small amount of noize
(think of ≈ as + or - a small number)

LWE: given the coefficients, the answers, find the secret vector.

What is learning without errors?

34 s1 + 12 s2 + 39 s3 + 16 s4 = 38
63 s1 + 29 s2 + 17 s3 + 7 s4 = 22
 9 s1 + 31 s2 + 52 s3 + 14 s4 = 1
54 s1 + 18 s2 + 43 s3 + 61 s4 = 59
19 s1 + 27 s2 + 53 s3 + 13 s4 = 15

…
24 s1 + 50 s2 + 3 s3 + 36 s4 = 58

mod 67

[s
1
 , s

2
, s

3
 , s

4
] is the secret vector.

Learning without errors is easy: Gaussian elimination.

Learning with errors [Regev 2009]

a1 , y1 = s ⋅ a1 + e1 mod q

…

am , ym = s ⋅ am + em mod q

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given samples of the form

Goal: find the secret vector (or the error vector).

Typical parameters: q = O(n2), m = poly(n), s >= 2*sqrt(n)

e <---

exp(- x2/s2)

Plan of the talk

- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error

amplitudes using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and

hardness [Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in

https://eprint.iacr.org/2024/555.pdf

Shortest Integer
Solution

(extrapolated)
Dihedral Coset

Learning with
Errors

[Ajtai 96]

A B A reduces to B, i.e., if there is an
Alg for B, there is an Alg for A

classical

quantum

[Regev 02]

[BKSW 18]

[Regev 05]

[SSTX 09]

[Regev 02]

obvious

obvious

obvious

Approximate Shortest Vector Problem

Shortest Integer
Solution

(extrapolated)
Dihedral Coset

Learning with
Errors

[Ajtai 96]

Idea 0: if you solve one of the LWE-complete problems,
you solve all of them.

[Regev 02]

[BKSW 18]

[Regev 05]

[SSTX 09]

[Regev 02]

obvious

obvious

obvious

Approximate Shortest Vector Problem

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

L = { z = As mod q for some s }

Idea 1: Solving decisional
LWE: given A, y,
distinguish whether

(1) y is like sA+e, or
(2) y is random

LWE

Random

L = { z = As mod q for some s }

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

L = { z = As mod q for some s }

Idea:
1. prepare a uniform
superposition of
balls around L

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

L = { z = As mod q for some s }

Idea:
1. prepare a uniform
superposition of
balls around L
2. Shift all balls by y
If y = As+e, then the
overlap is large;
If y is random, then
the overlap is small.

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

L = { z = As mod q for some s }

Idea:
1. prepare a uniform
superposition of
balls around L
2. Shift all balls by y
If y = As+e, then the
overlap is large;
If y is random, then
the overlap is small.

Problem: don’t know
how to do Step 1.

A very intuitive quantum idea of solving
decisional LWE (that is not intuitively working)

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS.

(Solving SIS also implies solving approximate lattice
problems in general [Ajtai 96])

Basic idea 2 was initially due to [Regev 09], and later used by
(1) Stehle et al. [SSTX 09], Chen et al. [CLZ 22], Debris-Alazard et
al. [DFS 24] in different lattice reductions/algorithms;
(2) [Poremba 23], [Bartusek, Khurana, Poremba 23], … for proof
of deletion from lattices
(3) Extended to coding problems [Yamakawa, Zhandry 22],
[Debris-Alazard, Remaud, Tillich 24], [Jordan et al 25], [Chailloux,
Tillich 25], …, promising for showing quantum advantages.

A

Short integer solution [Ajtai 96]:

Given a random matrix A, find a non-zero vector x such that

Ax = 0 mod q & |x|
2
<B for some B<q

 = 0 mod qx

public matrix

Short integer solution (SIS)

Short preimage

n

n log n
(q = poly(n))

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s > ∑e f(e)|e > (think of f as Gaussian)

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s > ∑e f(e)|e >

Compute +sA in the second register:
1: ∑s |s > ∑e f(e)|sA + e >

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s > ∑e f(e)|e >

Compute +sA in the second register:
1: ∑s |s > ∑e f(e)|sA + e >

Uncompute the first register by solving LWE:
2: ∑s |0 > ∑e f(e)|sA + e >
 = ∑s ∑e f(e)|sA + e >

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s > ∑e f(e)|e >

Compute +sA in the second register:
1: ∑s |s > ∑e f(e)|sA + e >

Uncompute the first register by solving LWE:
2: ∑s |0 > ∑e f(e)|sA + e >
 = ∑s ∑e f(e)|sA + e >

Take quantum Fourier transform:
3: ∑z ∑s ∑e f(e)exp(<sA+e, z>/q)|z >
 = ∑z ∑e f(e)exp(<e, z>/q) ∑s exp(<sAz>/q)|z >
 = ∑z s.t. Az = 0 FT(f)(z/q) |z >

Basic idea 2: If there is a quantum algorithm that solves
LWE, then there is a quantum algorithm that solves SIS

0: ∑s |s > ∑e f(e)|e >

Compute +sA in the second register:
1: ∑s |s > ∑e f(e)|sA + e >

Uncompute the first register by solving LWE:
2: ∑s |0 > ∑e f(e)|sA + e >
 = ∑s ∑e f(e)|sA + e >

Take quantum Fourier transform:
3: ∑z ∑s ∑e f(e)exp(<sA+e, z>/q)|z >
 = ∑z ∑e f(e)exp(<e, z>/q) ∑s exp(<sAz>/q)|z >
 = ∑z s.t. Az = 0 FT(f)(z/q) |z >

Solve|LWE> !
— [CLZ 22]

Solve | Learning with errors > (S|LWE>)

a
1

, | y
1
> = ∑

e1∊[0...q-1]
 f(e

1
) | s ⋅ a

1
 + e

1
 mod q >

…

a
m

, | y
m

> = ∑
em∊[0...q-1]

 f(e
m

) | s ⋅ a
m

 + e
m

 mod q >

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given quantum samples of the form

This is all we need in
1: ∑s |s > ∑e f(e)|sA + e > –> 2: ∑s |0 > ∑e f(e)|sA + e >

Solve | Learning with errors > (S|LWE>)

a
1

, | y
1
> = ∑

e1∊[0...q-1]
 f(e

1
) | s ⋅ a

1
 + e

1
 mod q >

…

a
m

, | y
m

> = ∑
em∊[0...q-1]

 f(e
m

) | s ⋅ a
m

 + e
m

 mod q >

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given quantum samples of the form

Questions:
1. What can we say about algorithms for S|LWE>?
2. What can we say about the hardness of S|LWE>?

Solve | Learning with errors > (S|LWE>)

a
1

, | y
1
> = ∑

e1∊[0...q-1]
 f(e

1
) | s ⋅ a

1
 + e

1
 mod q >

…

a
m

, | y
m

> = ∑
em∊[0...q-1]

 f(e
m

) | s ⋅ a
m

 + e
m

 mod q >

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given quantum samples of the form

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq and m is a sufficiently large
polynomial. (E.g., when f is the bounded uniform distribution)

Gaussian Laplacian Bounded uniform sin(x)/x

f

DFT(f)

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq., or the DFT of f is
non-negligible over Zq except for constantly many positions.

 sin(x)/x

f

DFT(f)

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq., or the DFT of f is
non-negligible over Zq except for constantly many positions.

Application: solve a variant of
SIS with infinity norm bound
for some parameters.

A

CLZ22: When A is very wide, can find an x with a
non-trivial infinite norm in quantum polynomial time.

Ax = 0 mod q & |x|∞< (q-c)/2

 = 0 mod qx

Short integer solution (where x is measured by its infinity norm)

n

m = (q-c)3 nc q log q
(q = poly(n))

Recent: SIS∞ with parameters above is actually solvable
classically [Imran, Ivanyos 24], [Kothari, O'Donnell, Wu 25].

a

, | y > = ∑

e∊[0...q-1]
 f(e) | s ⋅ a + e mod q >

| y > is a vector in Cq centered at s ⋅ a

How to understand an S|LWE> sample?

s ⋅ a

a

, | y > = ∑

e∊[0...q-1]
 f(e) | s ⋅ a + e mod q >

For any t ∊ [0...q-1],
denote |h(t) > := ∑

e∊[0...q-1]
 f(e) | t + e mod q >

In a q-dimensional space:

Idea of guessing s ⋅ a

|h(t) >

|h(t+1) >

|h(t+2) >

a

, | y > = ∑

e∊[0...q-1]
 f(e) | s ⋅ a + e mod q >

For any t ∊ [0...q-1],
denote |h(t) > := ∑

e∊[0...q-1]
 f(e) | t + e mod q >

Define a matrix

[----------- h(t) ----------]
[--------- h(t+1) ---------]
[--------- h(t+2) ---------]
...
[-------- h(t+q-1)) ------]

Idea of guessing s ⋅ a

|h(t) >

|h(t+1) >

|h(t+2) >

a

, | y > = ∑

e∊[0...q-1]
 f(e) | s ⋅ a + e mod q >

For any t ∊ [0...q-1],
denote |h(t) > := ∑

e∊[0...q-1]
 f(e) | t + e mod q >

Take normalized gram-schmidt to make it unitary

[----------- h(t) ----------]
[---- NGS(h(t+1)) -----]
[---- NGS(h(t+2)) -----]
...
[---- NGS(h(t+q-1)) --]

Idea of guessing s ⋅ a

|h(t) >

NGS(|h(t+1) >)

NGS(|h(t+2) >)

a

, | y > = ∑

e∊[0...q-1]
 f(e) | s ⋅ a + e mod q >

1. Pick a random t ∊ [0...q-1],
Denote |h(t) > := ∑

e∊[0...q-1]
 f(e) | t + e mod q >

2. Define a unitary matrix

U
t
 = ∑

i∊[0...q-1]
| i > < NGS(h(t+i)) | (NGS = Normalized Gram-Schmidt)

Idea of guessing s ⋅ a

|h(t) >

NGS(|h(t+1) >)

NGS(|h(t+2) >)

a

, | y > = ∑

e∊[0...q-1]
 f(e) | s ⋅ a + e mod q >

1. Pick a random t ∊ [0...q-1],
Denote |h(t) > := ∑

e∊[0...q-1]
 f(e) | t + e mod q >

2. Define a unitary matrix

U
t
 = ∑

i∊[0...q-1]
| i > < NGS(h(t+i)) | (NGS = Normalized Gram-Schmidt)

3. (filtering) Apply U
t
 on | y >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s⋅a != t, since if s⋅a = t, z must =0.
If z=2, we know s⋅a != t and s⋅a != t+1.
...
If z=q-1, we know s⋅a = t+q-1 = t-1 mod q!!!!!

Idea of guessing s ⋅ a

3. (filtering) Apply U
t
 on | y >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s⋅a != t, since if s⋅a = t, z must =0.
If z=2, we know s⋅a != t and s⋅a != t+1.
...
If z=q-1, we know s⋅a = t+q-1 = t-1 mod q!!!!!

4. If z = q-1, then we guess one of s⋅a
i
 correctly. With n correct

guess, we can recover s by Gaussian elimination.

NGS(|h(t+1) >)

NGS(|h(t+2) >)

|h(t) >

|h(s⋅a) >

3. (filtering) Apply U
t
 on | y >, measure and get the result z

If z=0, we learned nothing.
If z=1, we know s⋅a != t, since if s⋅a = t, z must =0.
If z=2, we know s⋅a != t and s⋅a != t+1.
...
If z=q-1, we know s⋅a = t+q-1 = t-1 mod q!!!!!

4. If z = q-1, then we guess one of s⋅a
i
 correctly. With n correct

guess, we can recover s by Gaussian elimination.

Q: How about the success probability?
A: Depends on the noise distribution f. NGS(|h(t+1) >)

NGS(|h(t+2) >)

|h(t) >

|h(s⋅a) >

Gaussian Laplacian Bounded uniform sin(x)/x

f

DFT(f)

GS
length

Solve | Learning with errors > (S|LWE>)

a
j
, | y

j
> = ∑

ej∊[0...q-1]
 f(e

j
) | s ⋅ a

j
 + e

j
 mod q >

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given quantum samples of the form

[CLZ 22] A poly time quantum algorithm that finds the secret vector
if the DFT of f is non-negligible over Zq and m is a sufficiently large
polynomial. (E.g., when f is the bounded uniform distribution).

[Debris-Alazard, Fallahpour, Stehlé 24]:
A better poly time quantum algorithm for the setting above, i.e.,
when the DFT of f is non-negligible over Zq.

Plan of the talk

- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error

amplitudes using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and

hardness [Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in

https://eprint.iacr.org/2024/555.pdf

Subexponential time algorithms for S|LWE>:

a
j
, | y

j
> = ∑

ej∊[0...q-1]
 f(e

j
) | s ⋅ a

j
 + e

j
 mod q >

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given quantum samples of the form

[CHLLT 25] A subexponential time quantum algorithm for solving
S|LWE> with completely known amplitudes.

(the amplitude f can be anything as long as DFT(f) has more than one
non-negligible points, including Gaussian)

Subexponential time algorithms for S|LWE>:

a
j
, | y

j
> = ∑

ej∊[0...q-1]
 f(e

j
) | s ⋅ a

j
 + e

j
 mod q >

s = [s
1
 , s

2
, ... , s

n
] is the secret vector.

Given quantum samples of the form

[CHLLT 25] A subexponential time quantum algorithm for solving
S|LWE> with completely known amplitudes.
Idea: Apply QFT on the S|LWE> samples
 -> ∑

k
 DFT(f)(k)e2π i k<a,s>/q |k>

 -> Apply quantum rejection sampling to get |0> + e2π i<a,s>/q |1>
 -> Use Kuperberg sieve: given a, |0> + e2π i<a,s>/q |1> , find s
 (needs exp(sqrt{n}) many samples)

Summary of [CHLLT 25]:

S|LWE> with completely known amplitudes (Gaussian or others):
solvable by subexponential time quantum algorithms.

S|LWE> with Gaussian amplitudes with unknown phases:
quantumly as hard as standard LWE or GapSVP.

An improvement of Bai, Jangir, Kirshanova, Ngo, Youmans.
[BJKNY25]:

S|LWE> with completely known Gaussian amplitudes is solvable by
quasipolynomial time quantum algorithms, when the modulus is a
power of two.

Plan of the talk

- Introducing the LWE problem
- Some basic ideas of quantumly solving LWE/SIS
- Quantumly solving S|LWE> for certain error

amplitudes using “filtering” [Chen, Liu, Zhandry 22]
- S|LWE> for Gaussian amplitudes: algorithms and

hardness [Chen, Hu, Liu, Luo, Tu 25]
- Complex Gaussian in

https://eprint.iacr.org/2024/555.pdf

Experience from before:
we need a good

amplitude function!

Gaussian with complex variance

f(x) = exp(-π (a+bi) x2)

Complex Gaussian
('cg, with r, s, c, q = ', 54, 3.00001, 100, 200)
('s^2 r^4/(s^4+r^4) = ', 8.999974265319997)

Complex Gaussian
('cg, with r, s, c, q = ', 54, 4.0001, 100, 200)
('s^2 r^4/(s^4+r^4) = ', 16.0003182430807)

Takeaway from Complex Gaussian:

- For f(x) = exp(-π (1/r2+i/T) x2), it is easy to find the center
of the state mod T. [CHLLT 25]

- The complex Gaussian amplitude is useful for reducing
LWE from a large modulus to a smaller modulus.

- How to use it for solving standard LWE: still don’t know.

LWE with Quantum Amplitudes

Yilei Chen

Thanks for your time!

